NovaTec S5+

Mounting and Installation

Version 1.0 from 05.05.2006


- Subject to change without notice -

Table of Contents

1.0	Preface	3
2.0	Safety Advice	3
3.0	General Information	6
3.1	Product Description	6
3.2	Using the Handbook	6
3.3	Use of Pictograms	6
4.0	Connection and Mounting	7
4.1	Safety Directions for Mounting	7
4.1.1	Mounting Site	7
4.1.2	Regulations and Master Conditions	8
4.1.3	Mounting Directions	,9
4.2	Scope of Delivery	10
4.2.1	Opening the Package	10
4.2.2	Contents of the Package	11
4.3	Mounting	12
4.4	Laying the Cable	12
4.4.1	Strain Relief and Positioning of the Cables	12
4.5	Internal Structure of NovaTec S5+	13
4.6	NovaTec S5+ Connector Panel	17
4.7	Earthing the NovaTecS5+	18
4.8	Connecting the NovaTec S5+	19
4.9	NovaTec S5+ Terminal Equipment Interface	20
4.9.1	The BRA Interface	20
4.9.2	The PRA Interface	20
4.9.3	The U Interface	21
4.9.4	The Antenna	21
4.9.5	Installing instructions of the outdoor antenna	22
4.10	Pin Assignment for Connections to the NovaTec S5+	24
4.10.1	CCU Pin Assignment	24
4.10.2	CCU-Light Pin Assignment	27
4.10.3	CCU-3 Pin Assignment	27
4.10.4	SOS Pin Assignment	28
4.10.5	CBS Pin Assignment	29
4.10.6	MCU Pin Assignment	30
4.10.7	WAU front panel Assignment	32
4.10.8	EWU Pin Assignment	
4.10.9	CAU Pin Assignment	38

Table of Contents

4.10.10	ULU Pin Assignment	41
4.10.11	PTI Pin Assignment	43
4.10.12	BCU Pin Assignment	45
4.11	Signal Assignment of the Telecommunications Sockets	46
4.12	Connecting the Interfaces	48
4.12.1	Connection of ISDN Terminal Equipment to the BRA Interface	48
4.12.2	Star-shaped (Category 5) Cabling Connection	50
4.12.3	Connecting the Terminals to the ULU or PTI	52
4.12.4	Trunk Line Connections to the CCU	53
5.0	Commissioning	54
5.1	Status displays on the NovaTec S5+	54
5.1.1	Status displays on the CCU and CCU-Light	54
5.1.2	Status displays on the CCU-3	57
5.1.3	Status displays on the SOS	60
5.1.4	Status displays on the CBS	63
5.1.5	Status displays on the MCU	66
5.1.6	Status displays on the ULU	67
5.1.7	Status displays on the CAU	69
5.1.8	Status displays on the WAU	70
5.1.9	Status displays on the SCU	72
5.1.10	Status displays on the EWU	74
5.1.11	Status displays on the PTI	76
5.1.12	Status displays on the BCU	78
5.2	Features of the Default Configuration	79
5.3	Installing the Configuration Software	80
5.4	Remarks to Callback Configuration	83
5.5	Remarks to SMS to E-Mail Configuration	89
5.6	Remarks to SIM-Server installation.	92
6.0	Technical Data	93

1.0 Preface

Dear Customer,

Congratulations on purchasing the NovaTec S5+. You have chosen a multifunctional telecommunications system, which through its modular concept fulfills many different functions. This Mounting and Installation Handbook will enable you to install the NovaTec S5+ to suit your technical environment. We would advise you to read this handbook carefully and to undertake the installation procedure step-by-step according to the instructions.

The NovaTec S5+ is available in two models. The table top version which has been designed as the name says as a table top or desk model, the other is a 19 inch rack version, both have the same capabilities and do not differ in any other functions.

2.0 Safety Advice

- Do not install the NovaTec S5+ near to heating systems such as radiators or in the vicinity of electric fields such as, for example, those generated by strip lighting and engines.
- Do not expose the NovaTec S5+ to dust, damp, vibrations or direct sunlight.
- Take care that no wires, nails or similar objects can fall through the ventilation slits.
- The NovaTec S5+ cannot be used prior to proper installation.
- Never clean the housing with petrol, thinners or other solvents. Simply wipe it over with a soft, dry cloth.
- Should internal components of the system become visible following physical disturbance of the equipment, disconnect the NovaTec S5+ from the electricity supply immediately.
- On the front of the system you will find the power supply socket With a relevant power cable (Not supplied) this should be connected to a 110 VAC to 240 VAC independent power supply.
- In order to prevent damage to person or property, never expose the NovaTec S5+ to rain or other forms of moisture.

NovaTec S5+ Page 3

For safety reasons, modifications to the construction or security engineering of the NovaTec S5+ are forbidden unless express permission has been obtained from NovaTec Kommunikationstechnik GmbH.

- NovaTec Kommunikationstechnik GmbH will not be held liable for any damage whatsoever resulting from modifications to the equipment, especially those relating to repairs to and soldering on the electronic circuit board.
- Mounting and commissioning should only be undertaken by suitably qualified personnel (e.g. telecommunications technicians or engineers).
- Please follow the safety advice when inserting or replacing the system's Slide-in modules.
- The NovaTec S5+ as well as the pole of the outdoor antenna must be earthed via an earthing cable with a minimum cross-sectional area of 2.5 mm². Should installation or operational problems occur which are not covered in this handbook please contact NovaTec Kommunikationstechnik GmbH immediately.
- To ensure trouble free usage the NovaTec S5+ must be installed according to this Mounting and Installation Handbook. The NovaTec S5+ should be installed in a closed metalic cabinet.
- Before commencing installation, ensure that the relevant electricity circuits are voltage free and properly disabled to avoid them being accidentally switched on whilst you are working.
- If the equipment is passed on to a third party this Mounting and Installation Handbook must accompany it.

NovaTec S5+ Page 4

Technologiepark 9, 33100 Paderborn, Germany

Declaration of Conformity:

NovaTec Kommunikationstechnik GmbH. declare under own sole responsibility that the product NovaTec S5+ is in conformity with the provisions of the following european council directive:

1999/5/EC (R&TTE-Directive)

The corresponding declarations and documents are deposited at the manufacturer.

Important Safety Requirements

- Connecting the NovaTec S5+ to a public telecommunication network, follow the installation guide.
- Comply with relevant regulations, before radio stations put into operation
- Comply with relevant regulations of local network provider
- The Guideline must be handed over with the equipment

NovaTec S5+ Page 5

3.0 General Information

3.1 Product Description

The NovaTec S5+ is a multifunctional Telecommunications equipment which operates in a wide range of functions, these functions are dependent on the number and sort of slide in modules configured in the system. The NovaTec S5+ is in the position to attain many capacities either as a Splitter/Multiplexer, Router or GSM Gateway

Depending on slide in cards the following interfaces are supported S_{2M}^{-} , U-, S_{0}^{-} , IP- and GSM-Interfaces.

3.2 Using the Handbook

This handbook is divided into chapters. The order and content of these chapters corresponds to the correct installation sequence and will lead you through the commissioning process for the NovaTec S5+. For this reason, we advise you to read the chapters according to the order in which they are written and to undertake and complete the corresponding activities as they occur. Only after this you should proceed to the next chapter. If you work in this manner the mounting and commissioning of the NovaTecS5+ will be easily and successfully completed. Please read the individual module descriptions to find out what each interface is supported by which module.

3.3 Use of Pictograms

Note:

Important information which you are advised to follow.

Attention:

Vital information which must be followed at all costs otherwise malfunction and resultant damage can occur.

Dona 6

4.0 Connection and Mounting

4.1 Safety Directions for Mounting

4.1.1 Mounting Site

- The mounting site should preferably be located within the office or living area. The NovaTec S5+ can also be installed in the cellar or attic as well as in other frost-, dust- and heat-free rooms.
- Do not mount your NovaTec S5+ near to equipment with strong magnetic fields, for example, large mains transformers, machines or lifts.
- Do not lay the communications or antenna cable parallel to power lines.
- The following regulations and master conditions (see 4.1.2) must be observed at all times.
- The NovaTec S5+ as 19"-Version should be installed in a 19" housing or a 19" cabinet. The system cabinet must been closed all-around to avoid access to any part of the NovaTec S5+. The connection and display parts in front of the NovaTec S5+ are permitted to be accessed by service Personel only. The front enclose, ideally a door, must be locked to avoid unauthorized access.
- The system cabinet must meet the requirements of a fire enclosure in accordance to IEC 950.
- There must be a clearance of min. (10 mm) above and below the NovaTec S5+ system rack. The NovaTec S5+ is cooled by free convection, the ventilation hole on the rear should not be blocked.
- By Installation of the system cabinet you must take care that it cannot be tipped over or be moved unintentionally.
- Before opening the housing of the system it should be disconnected from the mains supply. The slide in modules can be changed in an operational system.
- After a failure of the NovaTec S5+ through operation of a protective device (fuse), the equipment is as still under voltage as long it is connected to the mains power.
- If more than one NovaTec S5+ is being installed an a 19" cabinet, do not connect more NovaTec S5+ system to multi socket-outlets than allowed by the building power supply wiring regulations.

NovaTecS5+ Page 7

Cleaning

The NovaTec S5+ and connected terminal equipment should only be cleaned with a moistened cloth or an anti-static tissue. Ensure that no liquid enters the system.

Warning note

Your NovaTec S5+ is secured from the trunk line against power surges, for example lightning. Lines leaving the building must be equipped with coarse protection, for example, gas discharge elements.

Interference

Should interference occur, please contact your supplier or service technician.

4.1.2 Regulations and Master Conditions

Ventilation

Do not mount your NovaTecS5+ in a narrow non-ventilated cupboard. Rising heat levels could damage the NovaTec.

Dust (DIN 40046 Part 47)

Do not install the NovaTecS5+ in a dusty location, for example, near sanding machines, circular-or band-saws.

Humidity (IEC 721 3K6)

The NovaTec S5+ must not be exposed to high humidity levels such as those found, for example, in washrooms, indoor pools, saunas or bathrooms.

Temperature

Your NovaTec S5+ should only be operated in dry rooms where the temperature remains beween 0° C und 40° C. For this reason, do not install your NovaTec S5+ in locations subject to direct sunlight or strong cold influences.

4.1.3 Mounting Directions

Please observe your general national safety regulations for telecommunications facilities (VDE 0800 in Germany) and electric power plant and equipment (VDE 0100 in Germany).

Fitting and mounting of electronic equipment must be undertaken by an appropriately qualified specialist only. Installation and commissioning of the NovaTec S5+ must only be undertaken by electronics personnel who possess the qualifications required by national safety regulations.

If possible mount your NovaTecS5+ in the immediate vicinity of the mains electricity supply for the building and a 230V socket.

Do not plug the NovaTec S5+ into the socket until all installation work has been completed.

To prevent the system against lightning and atmospheric discharge interferences, the system should be protected with an appropriate suppressor (please contact NovaTec for more information).

Please lay the communications cable to the telephone sockets according to the national telecommunications cable regulations standards.

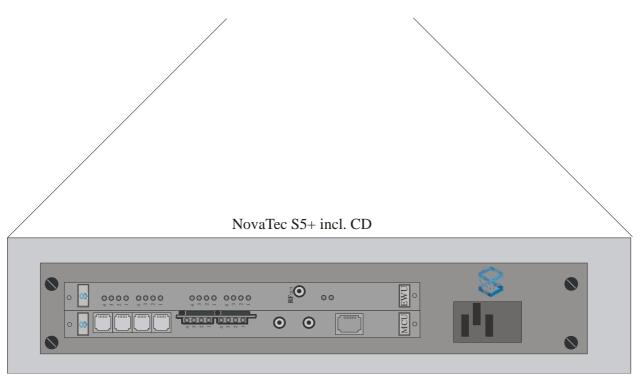
You are advised to use the communications cable Type J-Y (St) Y 2x2x0.6 mm for connecting every item of terminal equipment.

NovaTec S5+ Page 9

Scope of Delivery

The complete NovaTecS5+ system will be delivered in one cabinet in a large crate. It contains the following components:

Pos.	Qty.	Item			
1	1	NovaTec S5+			
2	1	This Mounting and Installation Handbook as PDF-File on CD in pos. 3			
3	1	Maintenance and configuration CD			
4		Optional Positions will be find on Delivery Note (like Antenna, Mounting Sets etc.)			


Opening the Package 4.2.1

The NovaTecS5+ is packed and delivered in a collapsible cardboard box. On opening the crate the first item you will see is the NovaTecS5+. The 19" racks and the slide in modules are already mounted according to your order.

Page 10

4.2.2 Contents of the Package

In case of single unit delivery on opening the package you will find within the cardboard box. The individual components as listed in Chapter 4.2. Please check that the contents of the cardboard box are correct and complete according to the delivery note.

Picture 1: Contents of the package in fullsize configuration

NovaTec S5+ Page 11
Version 1.0

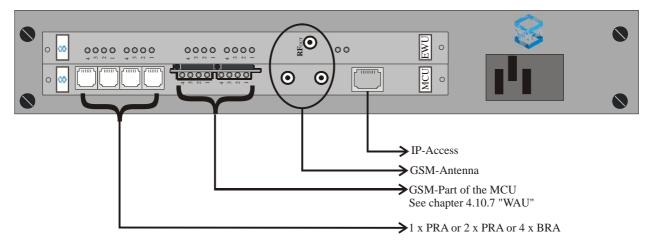
4.3 Mounting

After the NovaTecS5+ has been removed from the box, select the desired location for mounting the system according to the criteria given in Chapter 4.1.1. The NovaTecS5+ is built in a rack into which the individual modules are to be inserted. The backplane and the mains power supply are already fitted to this rack.

4.4 Laying the Cabling

All connections except the earth cable are connected to the NovaTec S5+ from the front. All local loops, antennas and extension lines are connected via special connectors located on the front panels of each of the slide-in modules. Different country have different connectors for the power cable. Thats why the power cable is not in scope of with the system. The power cable should be connected with the power socket on the front of the system. In order to avoid overheating the system, please ensure while laying the cabling that the air circulation is not obstructed.

4.4.1 Strain Relief and Positioning of the Cables


All lines that leave the system must be strain relieved at an appropriate place (see illustration in Picture 2). In the System the cables are simply of fixed to the frame with a cable binder. You can therefore use any place on the frame. Each of the wires for the lines for the local loops and the terminal equipment interfaces are colour coded. The definition of each colour can be found in Chapter 4.10.

Take care that you begin with Pin 32 (Plug 2) when connecting the cabling to the trunk and terminal equipment interfaces of each modul (not for MCU).

Please decide as early as possible, whether you will connect the terminal equipment to the system in a bus structure or a star-shaped (Category 5) cabling format. If using a star-shaped cabling format, the relevant terminating resistors must be deactivated (see Chapter 4.12).

Picture 2: Laying the cabling to the NovaTec S5+

Page 12 NovaTec S5+

Internal Structure of the NovaTec S5+

The NovaTecS5+ is comprised of several different modules. All modules can be inserted into the rack and then connected together at the rear of the rack via the backplane. The individual slots inside the system are clearly numbered on the backplane to ensure easy identification. The lower slot is Slot 1 where only the CCU or PTI should be inserted. On the upper, next to the CCU is Slot 2. The slot designations (slot numbers) can be found on the front side of the back plane. The numbers can be seen on the back plane when viewed from the insertion side of the rack.

The CCU is a Central Control Unit and is the core of the system. The CCU provides four BRA interfaces, one Centronics and one RS232 interface. In addition the CCU provides a plug in space for either a four time BRA or a two time PRA expansion board.

The CCU Light corresponds to the CCU with the exception that the CCU Light has no BRI Interfaces.

The CCU-3 corresponds in the basic functions to the CCU. The difference is firstly that the CCU-3 has instead of the printer interface an ethernet interface, which can be either operated with 10MBit or 100Mbit. Also the CCU-3 does not have ISDN Interfaces on the board but can be equipped with either 2 PRI or 2 BRI boards. All Support-Functions, that are on the CCU-Light/CCU via V.24 or ISDN are still realisable and can be carried out via Ethernet on the CCU-3. The CCU-3 has got more performance and memory space than the CCU or CCU-Light.

The mobile control unit (MCU) is a also a Central Control Unit special for the NovaTec S5+. The MCU has got two GSM-Channels. The connection of the ISDN interfaces is made with the MCU by RJ11 connectors on the front of the module. The MCU can be equipped only with one additional sub module. This can either be an ISDN2/S0 or a ISDN30/S2M-Sub module. The MCU can be used in the NovaTec S5+, although the NovaTec S5+ can also be equipped with CCU, CCU-Light or CCU-3.

The Call-Back-Server (CBS) is a Central-Server-Module for using the Call-Back-Funkction in the System. Installation guides for the CBS can be found in Chapter 5 of this handbook.

The Sea-Of-Sims (SOS) must be used in conjunction with the Sim-Server. The SOS consists of the CCU-3 and SIM Carrier Units (SCU). The SCU have 30 SIM card readers where the SIM cards can be placed. Installation guides for the SOS can be found in Chapter 5 of this handbook.

The Wireless Access Unit (WAU) provides the access to the mobile network and contains:

- up to two daugther boards with two dual band engines each with DTMF
- one 4 to 1 antenna combiner/multiplexer
- the electronic access to the backplane (hot plugable)

Please note: Never run the system without antenna! Do not leave any RF input without termination!

Each daughter board contains the SIM card reader, which is accessible via the front panel.

Page 13 NovaTecS5+

The CAU (if installed) is a Carrier Unit. This module offers three plug in spaces for expansion boards. Both BRA or PRA or a combination of both types of expansion boards can be inserted.

Usually the BRA interfaces are not provided with 42 Volts ISDN line power. If you want to connect a BRA interface to an item of terminal equipment that also needs a power supply from the BRA interface, it will be necessary to use a DC4. The DC4 is a seperate slide in module, that will provide the necessary voltage to power terminal equipment connected to the BRA interface. This module is simply added to the existing modules by inserting it into a slot in the rack. The DC 4 can **not** be installed into the NovaTec S5+.

The Sim-Carrier-Unit (SCU) contains the SIM-Cards for using the System as Sim-Server. For using the SCU the Sea-Of-Sims (SOS) has to be installed.

The **EWU**-Main-Board contains four GSM mobile engines and the Sub-Modul four SIM card readers for each GSM-Channels (4 SIM card reader for each GSM channel). The front panel contains:

- One RF output to be connected to an appropriate antenna.

The EWU contains four LEDs for each mobile engine and two LEDs for the EWU itself as Status-Display. The SIM card reader GSM-Channel can be inserted by SIM cards of different providers (multiple provider mode) at the same time or can be left without SIM card. Standard or prepaid SIM cards can be handled by the system at the same time. Using the EWU without Sub-Modul is usefull by using an SIM-Server for using external SIM-Cards. Please note: Never run the system without antenna! Do not leave any RF input without termination!

The **ULU** is a Module that can supply 4 x U-Interfaces. On these interfaces NT1s or TEs with U-Interfaces can be connected. In combination with PT-Repeaters and PT-US it is then possible to operate TEs (Terminal equipments) with S_0 Interfaces up to 24km away from the actual system.

The **PTI** is a Module that can convert an S_0 Interface to a U Interface. This would for example be required when a row of ISDN end equipments in a Star formation are terminated to a single point.

D. 14

The **DC4** is a power supply module. When S₀ Interfaces are required for example for the use of ISDN telephones and these ISDN telephones require power supply over the BRI interface then a DC4 must be used within the system. For calculation purposes 8 X ISDN telephones with typically 2 watts power consumptioneach require the use of 1 X DC4. The DC 4 can **not** be installed into the NovaTec S5+. When using the DC4 extension board in a S5+ chassis (power supply for the BRI interfaces), each BRI interface can be supplied with up to 1 Watts, however, the total power output of all BRI interfaces must not exceed 8 Watts. If the BRI interfaces are short circuited, this will cause a system reset of the System.

Disconnecting or connecting ISDN equipment that is supplied with power from the System may cause the system to reset

The B-Channel-Unit (**BCU**) enables the connection of the system to one or more IP Network for using VOIP-Applications. This then gives the possibility to re-route Data or Speech that is received into the system via ISDN, GSM or IP to other already existing IP networks. The BCU is available as either a 4 Channel, 8 channel, 16 channel or 32 channel BCU. The Modules are not destinguishable from each other from a front. If the BCU is removed from the System a sticker can be found on the connectors on the Backplane with the Model number, hereby the individual variants of the BCU can be differentiated. Each BCU can be populared with a GPS receiver doughter board. This doughterboard is optional necessary to be used minimum one in a system, when the NovaTec S5+ has no other Synchronisation Source and synchron data should be transferred via IP network (TDM over IP).

The Plug-in cards are sub Modules that can be attached to various mainboard Modules. The Modules that can be equipped with Plug-in cards are the CCU, CCU-3, CCU-Light, CAU, WAU, EWU and BCU.

The following Plug-in cards are available at this time:

BRI-Plug-in card

The BRI-Plug-in card makes 4 additional S_0 interfaces available. With the BRA Plug-in cards there are two different variants .The BRI Plug-in card with the article number 1F5021-2 only allows ISDN terminals to be attached. To the BRI Plug-in card with the article number 1F5020-2 ISDN terminals (subscriber mode) or ISDN local loops (trunk line mode) can be attached alternatively. The function of the proposed interface must be defined in the configuration.

NovaTec S5+ Page 15

PRI-Plug-in card

The PRI Plug-in card is likewise in two different variants available:

The PRI Plug-in card with the article number 1F5020-1 makes two S_{2M}-Interfaces available. On the other hand the PRI Plug-in card with the article number 1F5020-1/1 makes available only one S_{2M} -Interface.

PRI-Plug-in card with optional Echo Canceling

This PRI Module is available in 6 Variants:

By way of the Article number on the delivery note or on the modul can be seen which module is actually installed in the system.

The 6 variants are:

1F5100 -> PRI-Plug-in card with 2 PRI Interfaces

1F5100/1 -> PRI-Plug-in card with 1 PRI Interface

1F5100/1E -> PRI-Plug-in card with 1 PRI Interface including Echocancelling.

1F5100E -> PRI-Plug-in card with 2 PRI Interfaces with Echocanceller active on Interface 1

1F5100ER -> PRI-Plug-in card with 2 PRI Interfaces including Echocanceller on Interface 1 and Bypass Relais for the 2nd PRI interface to the 1st when system is inactive.

1F5100R -> PRI-Plug-in card with 2 PRI Interfaces with switch through for the 1st PRI interface to the 2nd when system is inactive.

The Plug-in card with the numbers 1F5100, 1F5100/1 and 1F5100R have no echocancelling functions.

The plug-in card with the numbers 1F5100/1E 1F5100E and 1F5100R have echocancelling functions on channel 1 (Recognisable by an "E" in the Article number).

The Plug-in card with the numbers 1F5100ER and 1F5100R switch between Interface 1 to Interface 2 when the system is inactive, this allows for operated systems behind the NovaTec to carry on operating when the NovaTec is out of operation.

These S2M (PRI ISDN 30) Add-on boards can be installed on the CCU3, CCU_Light and the CAU.

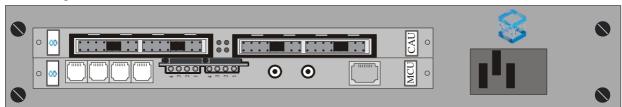
GSM-2 Plug-in-card

The GSM-2-plug in card can be used on the WAU twice and on the MCU (always placed). It supports the system with two GSM-Dual-Band interfaced with DTMF.

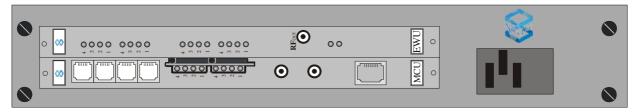
GPS-Receiver

The GPS-Receiver is an plug-in card only for the BCU. it supports the system with an reference clock if no other reference clock source is available. In this case the system needs minimum one receiver on one BCU.

SIM-Reader Plug-in card

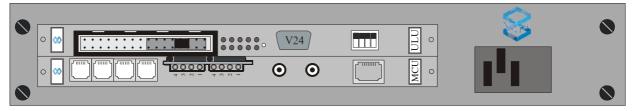

The SIM-Reader Plugin-in card is an Sub-Modul only for the EWU. It supplies the EWU with 16 Sim-Card-Reader (4 for each GSM-Channel of the EWU) and will be needed, for lokal SIM-Cards. For Applications with SIMs in SIM-Server only the SIM-Reader Plugin card is not neccessary.

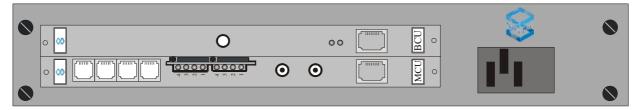
NovaTecS5+


4.6 NovaTec S5+ Connector Panel

All connections that are required to operate the NovaTec S5+ are established via the plug-in connectors on the front panel. Therefore, only use officially authorised cables or those that we provide with the equipment.


First example

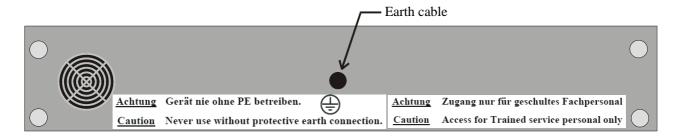

Second example


Third example

Fourth example

Fifth example

Picture 3: NovaTec S5+ connector panel


NovaTecS5+ Page 17

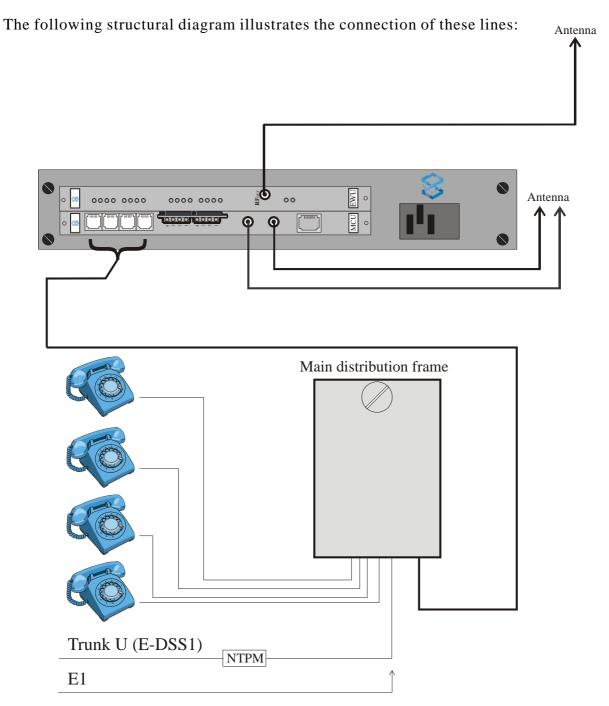
4.7 Earthing the NovaTec S5+

According to the German electrical engineering authority regulations, VDE 0800 Part 2, the NovaTec S5+ must be earthed through a fixed connection that cannot be disconnected. For this purpose there is on the back of the NovaTec S5+ a pin with 4mm diameter. To this pin a yellow-green earth cable with a minimum cross section of 2,5mm² must be attached with an appropriate lug. This yellow-green earth cable is not supplied so must be made up therefore by the customer.

Identify a point in the building where building services are located and the NovaTec S5+ can be earthed. We recommend the potential equalisation bar of your building plant. Take care that the earthing cable is securely connected to the earthing point for your building plant.

The earthing cable must be connected to the NovaTec S5+ and the earthing point of your building services. Please ensure, that your telecommunications system and all distributors are also earthed.

Picture 4: Connection of the earth cable to the NovaTec S5+ (viewed from rear)


Where more than one rack is used, each must be earthed separately and directly to the building's potential equalisation bar.

4.8 Connecting the NovaTec S5+

All trunk and terminal equipment interfaces on the NovaTec S5+ are fed through a main distribution frame or a patch panel. This includes all lines from the trunk or subscriber to the NovaTec S5+ and the lines from NovaTec S5+ to the switch.

All lines leaving the building must have a coarse protection to guard against power surges due to lightning strike.

Important:

Before commencing installation please note Chapter 5.2

Picture 5: Structure of line connections to the NovaTec S5+

NovaTec S5+ Page 19 Version 1.0

NovaTec Terminal Equipment Interface

This chapter describes the physical assembly of the NovaTec S5+ terminal equipment interface. Furthermore, the number of wires and their assignments are given for each type of interface.

The BRA Interface 4.9.1

The BRA interface is a digital 4-wire interface. This 4-wire interface comprises two pairs of wires. One pair of wires realizes the datastream for the transmission direction and the other pair is dedicated to the receiving direction. The individual wires in each pair of wires are differentiated as wire A and wire B. Each BRA interface consists of the following four wires:

Transmit A Transmit B Receive A Receive B

When connecting terminal equipment to the NovaTec S5+ ensure that the BRA interface wires are not accidentally switched.

4.9.2 The PRA Interface

The PRA interface is a digital 4-wire interface. This 4-wire interface is comprised of two pairs of wires. One pair of wires realizes the datastream for the transmission direction, and the other pair is dedicated to the receiving direction. The individual wires in each pair of wires are differentiated as wire A and wire B. The end of non used lines must be terminated in the main distribution frame. Each PRA interface consists of the following four wires:

Transmit A Transmit B Receive A Receive B

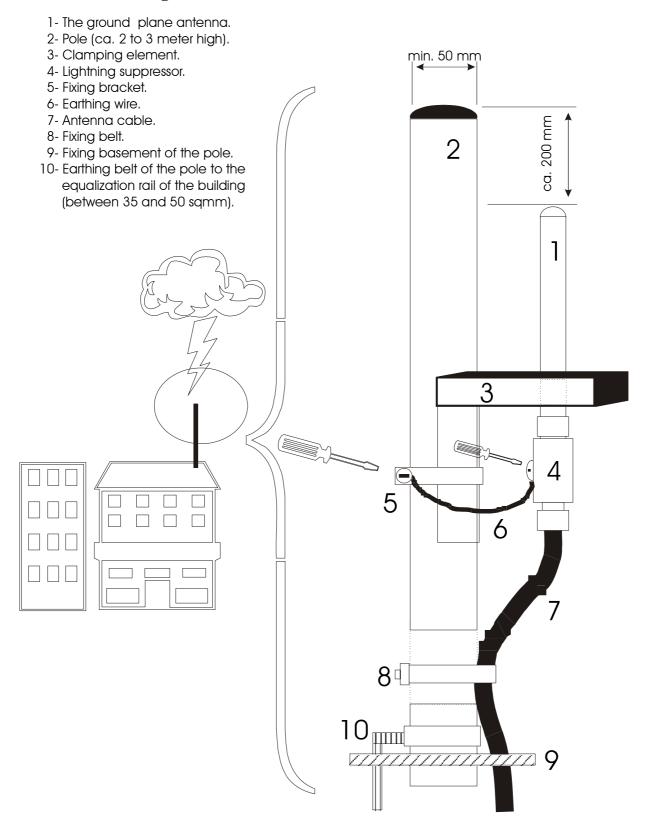
When connecting terminal equipment to the NovaTec S5+ ensure that the PRA interface wires are not accidentally switched.

NovaTecS5+ Page 20

4.9.3 The U Interface

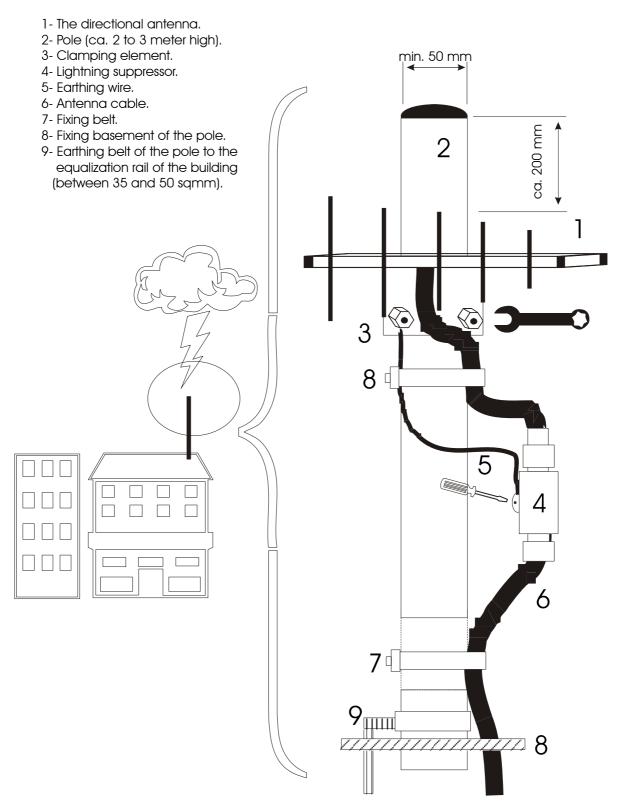
The U interface is a digital 2-wire interface. This 2-wire interface comprises two wires that are interchangeable during installation. The U interface comprises the following two wires:

Wire A Wire B


4.9.4 The Antenna

The RF output on the front panel of the WAU or EWU must be connected to the antenna. The type of the coax cable connected to the RF output of the WAU or EWU is configuration dependent. If a long distance is required (cable length more than 10 meters) other cable types must be used.

For more information please contact the support center of NovaTec.

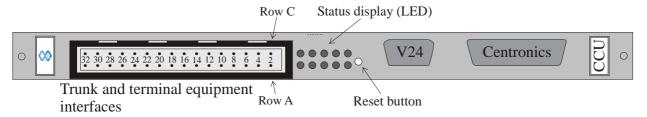

NovaTec S5+ Page 21
Version 1.0

4.9.5 Installing instructions of the outdoor antenna

Picture 6: Installation of the ground plane antenna

Picture 7: Installation of the directional antenna

4.10 Pin Assignment for Connections to the NovaTec S5+


This chapter describes the signal assignment for all NovaTec S5+ plug connections. This information will enable you to plug all your terminal equipment into the NovaTec S5+.

For directionally orientated signals the given signal direction is always described from the perspective of the NovaTec S5+.

4.10.1 CCU Pin Assignment

The contact pins in the plug are arranged in two rows (Row A and Row C) with each row providing 32 contacts. As this plug is only equipped with every second contact there are 16 contacts per row and the contacts in each row are numbered from 2 to 32. The following diagramm shows this in detail.

Picture 8: CCU pin assignment

The majority of the 32 contacts are assigned with a signal. The following table shows the signal assignment of the plug and the position of the coding switch in detail.

$V.24/RS232\ interface\ signal\ assignment$

Pin	Signal name	Signal direction relating to the CCU	
1	Unassigned		
2	Receive data	Input	
3	Transmit data	Output	
4	Data terminal ready	Output	
5	System ground		
6	Data set ready	Input	
7	Request to send	Output	
8	Clear to send	Input	
9	Unassigned		

Centronics interface signal assignment

Pin	Signal name	Signal direction relating to the CCU	
1	Strobe	Output	
2	Data bit 0	Output	
3	Data bit 1	Output	
4	Data bit 2	Output	
5	Data bit 3	Output	
6	Data bit 4	Output	
7	Data bit 5	Output	
8	Data bit 6	Output	
9	Data bit 7	Output	
10	Acknowledge	Input	
11	Busy	Input	
12	Paper end	Input	
13	Select	Input	
14	Autofeed	Output	
15	Error	Input	
16	Initialize	Output	
17	Select in	Output	
18	Signal ground		
19	Signal ground		
20	Signal ground		
21	Signal ground		
22	Signal ground		
23	Signal ground		
24	Signal ground		
25	Signal ground		

CCU trunk and terminal equipment interface

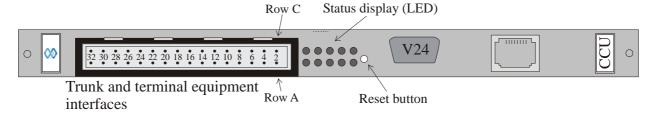
Plug	Inte	erface	Signal	Line colour	Row	Contact
	BRA		Transmit A	white	A	2
	BRA	1	Transmit B	brown	С	2
	BRA		Receive A	green	A	4
	BRA		Receive B	yellow	С	4
	BRA		Transmit A	grey	A	6
	BRA		Transmit B	pink	С	6
	BRA		Receive A	blue	A	8
1 1	BRA		Receive B	red	С	8
	BRA		Transmit A	black	A	10
_	BRA	2	Transmit B	violet	С	10
	BRA		Receive A	grey/pink	A	12
	BRA		Receive B	red/blue	С	12
	BRA		Transmit A	white/green	A	14
	BRA	1	Transmit B	brown/green	С	14
	BRA	4	Receive A	white/yellow	A	16
	BRA	_	Receive B	yellow/brown	С	16
	PRA		Transmit A	white	A	18
	PRA	5	Transmit B	brown	С	18
	PRA		Receive A	green	A	20
	PRA		Receive B	yellow	С	20
	PRA	_	Transmit A	white	A	22
	PRA	6	Transmit B	brown	С	22
_	PRA	U	Receive A	green	A	24
	PRA		Receive B	yellow	С	24
	Free				A	26
	Free				С	26
	Free				A	28
	Free				С	28
	Free				A	30
	Free				С	30
	Free				A	32
	Free				С	32

If a BRA expansion board is inserted into the PRA slot on the CCU, the front cover signal assignment for Plug 2 also applies for Plug 1.

4.10.2 CCU-Light Pin Assignment

The CCU Light cannot be differentiated outwardly from the CCU. Only after taking out the CCU Light from the chassis, you will find a label at one end of the two plugs on the rear wall, with the appropriate signature of the Modules.

The function mode and the interfaces corresponds of the CCU to those on the CCU light only with the difference that the CCU Light does not possess BRA interfaces on board. The place for a plug-on card, which is usually equipped with a PRA Plug-in card, is also available on the CCU Light the present signal allocation corresponds to the CCU, whereby the pins of Plug1 are not occupied.


4.10.3 CCU-3 Pin Assignment

The CCU-3 is an advancement of the existing CCU.

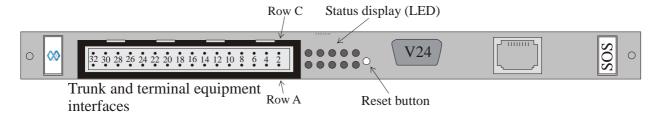
With the CCU-3 newer and faster processors are used, which accelerates the boot procedure primarily. Additionally the CCU does not possess a Centronics interface instead in its place is an Ethernet interface, which can be operated both with 10 MBit and with 100 Mbit. All remote support functions e.g. configuration of the system or diagnosis are thus over the Ethernetinterface and via IP possible. Furthermore the CCU offers not one place for a plug-on cards but for two. The places for the plug-on cards are marked on the printed circuit board with Submodul 1 and Submodul 2

The connections for the Submodul_1 are marked on the front screen with Plug 1 and for the Submodul_2 with Plug 2 (see for this pin allocation CCU).

In the chapter for CAU is described, how the terminal resistances of the plug-on maps can be deactivated.

Picture 10: CCU-3 pin assignment

NovaTec S5+ Page 27
Version 1.0


4.10.4 **SOS Pin Assignment**

Sea-Of-Sims (SOS) is the core of the system for using the TMG as Sim-Server. For this case are one or more SCU's required.

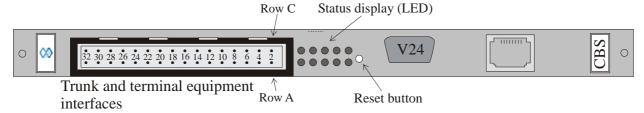
The SOS supports an Ethernet interface, which can be operated with 10 MBit or 100 Mbit. All remote support functions e.g. configuration of the system or diagnosis are thus over the Ethernetinterface and via IP possible. Furthermore the SOS offers two places for plug-on cards. The places for the plug-on cards are marked on the printed circuit board with Submodul_1 and Submodul_2

The connections for the Submodul_1 are marked on the front screen with Plug 1 and for the Submodul_2 with Plug 2 (see for this pin allocation SOS).

In the chapter for CAU is described, how the terminal resistances of the plug-on maps can be deactivated.

Picture 11: SOS pin assignment

Page 28

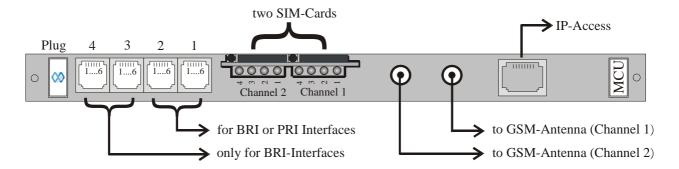

4.10.5 CBS Pin Assignment

Call-Back-Server (CBS) is the core of the system for using the system as Call-Back-Server.

The CBS supports an Ethernet interface, which can be operated with 10 MBit or 100 Mbit. All remote support functions e.g. configuration of the system or diagnosis are thus over the Ethernetinterface and via IP possible. Furthermore the SOS offers two places for plug-on cards. The places for the plug-on cards are marked on the printed circuit board with Submodul_1 and Submodul_2

The connections for the Submodul_1 are marked on the front screen with Plug 1 and for the Submodul_2 with Plug 2 (see for this pin allocation CBS).

In the chapter for CAU is described, how the terminal resistances of the plug-on maps can be deactivated.



Picture 12: SOS pin assignment

NovaTec S5+ Page 29
Version 1.0

4.10.6 MCU Pin Assignment

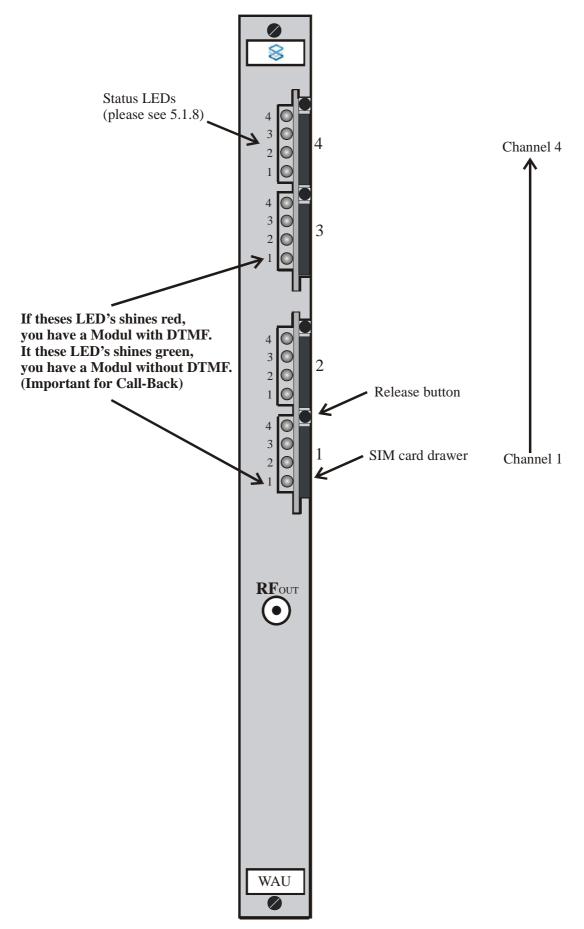
The Mobile-Control-Unit (MCU) is the special core for the NovaTec S5+. The MCU supports two GSM-Channels, one IP-Interface and four RJ11 connctors for PRI or BRI interfaces. For each GSM-Channel one SIM-Card can be inserted. The MCU also allows room for one sub module. This can be a PRI-Sub-Modul or an BRI-Sub Modul. If a PRI-Sub-Modul is used, only the RJ11 connector 1 and 2 are used. If only an one-channel-PRI-Card is used, only RJ11 connector 1 will be in use. If a BRI-Sub-Modul is used all four RJ11 connectors will be used. The MCU has also an Ethernet connection and two SMA-Antenna connectors for the two GSM-Channels.

Picture 13: MCU pin assignment

Page 30 Version 1.0

Plug Pin		BRI-Sub-Modul Signal	PRI-Sub-Modul Signal	
	1	Free	Free	
	2	Receive A	Receive A	
1	3	Transmit A	Transmit A	
1	4	Receive B	Receive B	
	5	Transmit B	Transmit B	
	6	Free	Free	
	1	Free	Free	
	2	Receive A	Receive A	
7	3	Transmit A	Transmit A	
2	4	Receive B	Receive B	
	5	Transmit B	Transmit B	
	6	Free	Free	
	1	Free	Free	
	2	Receive A	Free	
2	3	Transmit A	Free	
)	4	Receive B	Free	
	5	Transmit B	Free	
	6	Free	Free	
	1	Free	Free	
	2	Receive A	Free	
	3	Transmit A	Free	
🛨	4	Receive B	Free	
	5	Transmit B	Free	
	6	Free	Free	

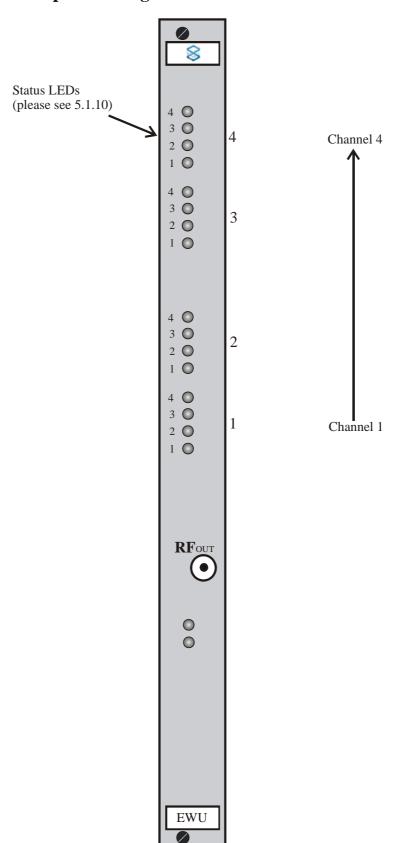
4.10.7 WAU front panel Assignment


The WAU contains the mobile engines and the SIM card readers. The front panel contains:

- One RF output to be connected to an appropriate antenna.
- One strain relief lug for the antenna cable.
- WAU can be mounted with up to two mobile engine daughter cards with two engines each.

The mobile engine daughter cards contain the SIM card reader and 4 LEDs for each mobile engine. The SIM card reader of each daughter card can be inserted by SIM cards of different providers (multiple provider mode) at the same time or can be left without SIM card. Standard or prepaid SIM cards can be handled by the system at the same time.

Mounting/dismounting of the SIM cards:


- 1- push the release button (see picture 14) with a hard sharp pointed object to release the drawer. Remove the drawer completely.
- 2- Insert the SIM card into the drawer in the correct position (please note that the marked corners of the SIM card and the drawer should be in the same position).
- 3- Push the drawer with the SIM card into the appropriate slot, with the contacts of the SIM card pointing to the LEDs.
- 4- For all other channels please go through the same procedure.
- 5- Then configure the SIM card into the system with the configuration software.

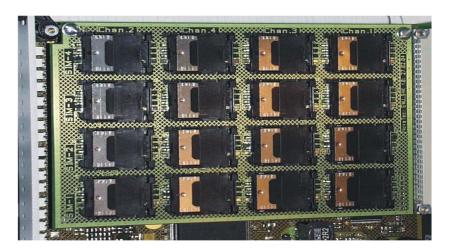
Picture 14: WAU front panel assignment and placing of the SIM-Cards

NovaTec S5+ Page 33

4.10.8 EWU front panel Assignment

Picture 15: EWU front panel assignment

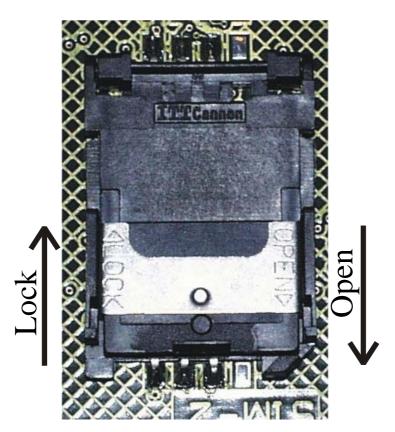
The EWU contains four GSM mobile engines and four SIM card readers for each GSM-Channels. The front panel contains:

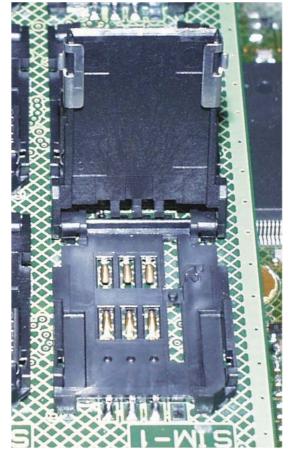

- One RF output to be connected to an appropriate antenna.

The EWU contain four LEDs for each mobile engine and two LEDs for the EWU itself as Status-Display. The SIM card reader GSM-Channel can be inserted by SIM cards of different providers (multiple provider mode) at the same time or can be left without SIM card. Standard or prepaid SIM cards can be handled by the system at the same time.

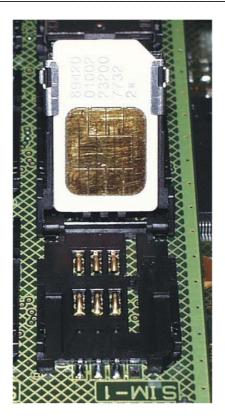
Mounting/dismounting of the SIM cards:

- 1- Unscrew the two screws on top and bottom of the front panel and pull the EWU card out of the system. On this Module you will find the Sim Card Holders. On the Edge of the Circuit board you will find the inscription to show which Sim Card (SIM-1 to SIM 4) should be associated with which GSM Channel (Chan.1 to Chan.4) (Picture 16).
- 2- Open the Sim Card Holder, by pushing the Metal fastener 2mm outwards, and then unclip the Sim Card Holder (Picture 17 and 18)
- 3- Insert the Sim Card as shown in Picture 19 into the unclipped upperside of the Sim Card Holder, Reclip the Sim Card Holder down and secure with the metal fastener
- 4- For all other channels please go through the same procedure.

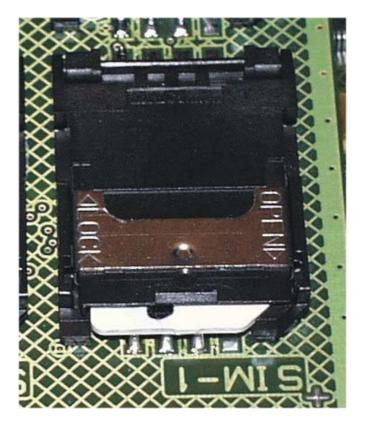

Important Note: All Simcard readers are to be in the locked position before the EWU is inserted into the TMG


Picture 16: Sim card reader on EWU

NovaTec S5+ Page 35



Picture 17: Handling the Sim card reader on EWU

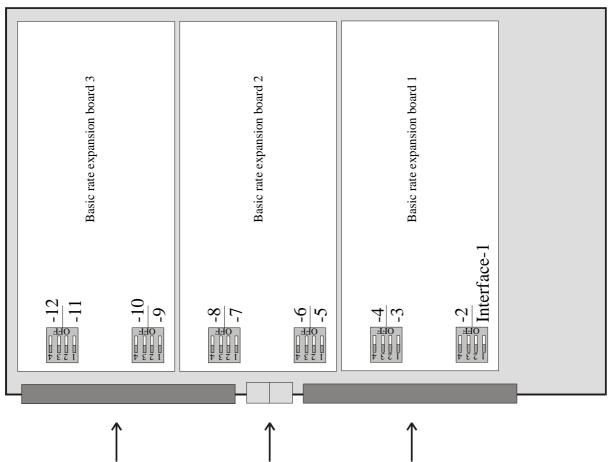


Picture 18: OpenSim card reader on EWU

Picture 19: Placed SIM-Card

Picture 20: Placed SIM-Card in closed holder

CAU Pin Assignment 4.10.9


The contact pins in the plug are arranged in two rows (Row A and Row C) with each row providing 32 contacts. As this plug is only equipped with every second contact there are 16 contacts per row and the contacts in each row are numbered from 2 to 32. The following picture shows this in detail.

Trunk and terminal equipment interfaces 2 Trunk and terminal equipment interfaces 1

Picture 21: CAU pin assignment

Coding switch to activate/deactivate the terminating resistor for basic rate interfaces

Terminal equipment interfaces 2 Light emitting diodes Terminal equipment interfaces 1

Picture 22: Positioning of the CAU coding switch

$CAU\ terminal\ equipment\ interface\ 1$

Plug	In	terface	Signal	Line colour	Row	Contact
	Free			white	A	2
	Free			brown	С	2
	Free			green	A	4
	Free			yellow	С	4
	Free			grey	A	6
	Free			pink	С	6
	Free			blue	A	8
1	Free			red	С	8
	Free			black	A	10
	Free			violet	С	10
	Free			grey/pink	A	12
	Free			red/blue	С	12
	Free			white/green	A	14
	Free			brown/green	С	14
	Free			white/yellow	A	16
	Free			yellow/brown	С	16
	BRA	4	Transmit A	white	A	18
	BRA	1	Transmit B	brown	С	18
	BRA		Receive A	green	A	20
	BRA		Receive B	yellow	С	20
	BRA		Transmit A	grey	A	22
	BRA		Transmit B	pink	С	22
	BRA		Receive A	blue	A	24
	BRA		Receive B	red	С	24
	BRA		Transmit A	black	A	26
	BRA	2	Transmit B	violet	С	26
	BRA		Receive A	grey/pink	A	28
	BRA		Receive B	red/blue	С	28
	BRA		Transmit A	white/green	A	30
	BRA	1	Transmit B	brown/green	С	30
	BRA	4	Receive A	white/yellow	A	32
	BRA	_	Receive B	yellow/brown	С	32

CAU terminal equipment interface 2

Plug	In	terface	Signal	Line colour	Row	Contact
	BRA		Transmit A	white	A	2
	BRA	5	Transmit B	brown	С	2
	BRA		Receive A	green	A	4
	BRA		Receive B	yellow	С	4
	BRA	_	Transmit A	grey	A	6
	BRA	6	Transmit B	pink	С	6
	BRA	O	Receive A	blue	A	8
1	BRA		Receive B	red	С	8
	BRA		Transmit A	black	A	10
	BRA	7	Transmit B	violet	С	10
	BRA		Receive A	grey/pink	A	12
	BRA	-	Receive B	red/blue	С	12
	BRA	8	Transmit A	white/green	A	14
	BRA		Transmit B	brown/green	С	14
	BRA		Receive A	white/yellow	A	16
	BRA		Receive B	yellow/brown	С	16
	BRA	_	Transmit A	white	A	18
	BRA		Transmit B	brown	С	18
	BRA	9	Receive A	green	A	20
	BRA		Receive B	yellow	С	20
	BRA	4 0	Transmit A	grey	A	22
	BRA	$1 \cap$	Transmit B	pink	С	22
	BRA	$1\mathbf{U}$	Receive A	blue	A	24
	BRA		Receive B	red	С	24
	BRA	4 4	Transmit A	black	A	26
	BRA	11	Transmit B	violet	С	26
	BRA		Receive A	grey/pink	A	28
	BRA		Receive B	red/blue	С	28
	BRA	4 6	Transmit A	white/green	A	30
	BRA	17	Transmit B	brown/green	С	30
	BRA	12	Receive A	white/yellow	A	32
	BRA		Receive B	yellow/brown	С	32

If each of the CAU plugs in spaces 1-3 are equipped with a PRA card, only the first two interfaces of the respective plugs are assigned with a signal (see CCU signal assignment).

4.10.10 ULU Pin Assignment

The contact pins in the plug are arranged in two rows (Row A and Row C) with each row providing 32 contacts. As this plug is only equipped with every second contact there are 16 contacts per row and the contacts in each row are numbered from 2 to 32. The following picture shows this in detail.

Picture 23: ULU Pin Assignment

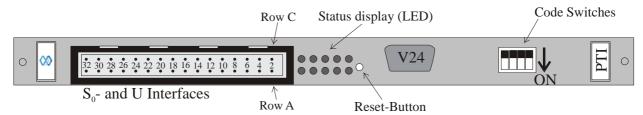
The following table shows the signal assignment of the plug in detail: Signal assignment for the V.24/RS232 configuration and data interface

Pin	Signal name	Signal direction relating to the ULU
1	Unassigned	
2	Receive data	Input
3	Transmit data	Output
4	Data terminal ready	Output
5	System ground	
6	Data set ready	Input
7	Request to send	Output
8	Clear to send	Input
9	Unassigned	

NovaTec S5+ Page 41
Version 1.0

Plug	In	terface	Line	Signal	Line colour	Row	Contact
	U	1	1	Wire A	white	A	2
	U	1	1	Wire B	brown	С	2
	free				green	A	4
	free				yellow	С	4
	U	7	7	Wire A	grey	A	6
	U	2	2	Wire B	pink	С	6
_	free				blue	A	8
1	free				red	С	8
1	U	2	2	Wire A	black	A	10
	U	3)	Wire B	violet	С	10
	free				grey/pink	A	12
	free				red/blue	С	12
	U	1	4	Wire A	white/green	A	14
	U	4		Wire B	brown/green	С	14
	free				white/yellow	A	16
	free				yellow/brown	С	16
	free		1		white	A	18
	free	5			brown	С	18
	free	J	1		green	A	20
	free				yellow	С	20
	free				grey	A	22
	free	6	7		pink	С	22
	free	O			blue	A	24
	free				red	С	24
	free				black	A	26
	free	7	2		violet	С	26
	free	/			grey/pink	A	28
	free				red/blue	С	28
	free	<u> </u>			white/green	A	30
	free	Q	1		brown/green	С	30
	free	0	+		white/yellow	A	32
	free				yellow/brown	С	32

4.10.11 PTI Pin Assignment


This chapter describes the signal assignment for all PTI plug connections.

For directionally orientated signals the given signal direction is always described from the perspective of the NovaTec S5+ PTI.

PTI-SU Pin Assignment

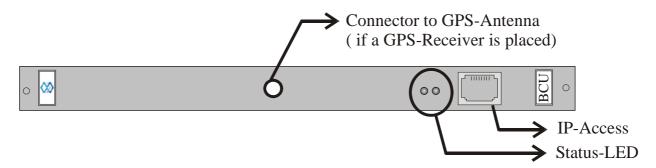
The contact pins in the plug are arranged in two rows (Row A and Row C) with each row providing 32 contacts. As this plug is only equipped with every second contact there are 16 contacts per row and the contacts in each row are numbered from 2 to 32. The following picture shows this in detail.

Picture 24: PTI pin assignment

V.24 interface signal assignment

Pin	Signal name	Signal direction relating to the PTI-SU
1	Unassigned	
2	Receive data	Input
3	Transmit data	Output
4	Data terminal ready	Output
5	System ground	
6	Data set ready	Input
7	Request to send	Output
8	Clear to send	Input
9	Unassigned	

PTI-SU, S_0 and U_0 interfaces, directionally orientated signals the given signal is always described from the perspective NovaTec S5+.

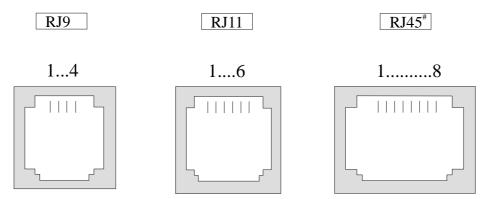

Plug	In	terface	Line	Signal	Line colour	Row	Contac
	U	1	1	Wire A	white	A	2
	U	1	1	Wire B	brown	С	2
	free				green	A	4
	free				yellow	С	4
	U	7	7	Wire A	grey	A	6
	U	2	2	Wire B	pink	С	6
_	free				blue	A	8
1	free				red	С	8
1	U	2	2	Wire A	black	A	10
	U	3)	Wire B	violet	С	10
	free				grey/pink	A	12
	free				red/blue	С	12
	U	1	4	Wire A	white/green	A	14
	U	4		Wire B	brown/green	С	14
	free				white/yellow	A	16
	free				yellow/brown	С	16
	S ₀			Transmit A	white	A	18
	S ₀	5	1	Transmit B	brown	С	18
	S ₀	J		Receive A	green	A	20
	S_0			Receive B	yellow	С	20
	S_0			Transmit A	grey	A	22
	S ₀	6		Transmit B	pink	С	22
	S ₀	O	2	Receive A	blue	A	24
	S ₀			Receive B	red	С	24
	S_0			Transmit A	black	A	26
	S_0	7	2	Transmit B	violet	С	26
	S_0	/	J	Receive A	grey/pink	A	28
	S_0			Receive B	red/blue	С	28
	S_0			Transmit A	white/green	A	30
	S_0	Q	1	Transmit B	brown/green	С	30
	S_0	0	4	Receive A	white/yellow	A	32
	S_0			Receive B	yellow/brown	С	32

4.10.12 BCU Pin Assignment

The B-Channel-Unit (BCU) enables the VOIP/IP connectivity of the NovaTec S5+. The BCU includes the vocoder and the elastic buffer for the voice compression and Jitter compensation for the IP Package trip. BCU handels the RTP and RTCP for the VOIP applications. The BCU is available in 4 variants:

1F7000 -> BCU-4 with 4x vocoder 1F7001 -> BCU-8 with 8x vocoder 1F7002 -> BCU-16 with 16x vocoder 1F7003 -> BCU-32 with 32x vocoder

The Moduls are not distinguishable from the front. If the BCU is removed from the System a sticker can be found on the connectors to the backplane with Model number, hereby the individual variants of the BCU can be differentiated or if a connection is made via the Trace-Info-Client this can be also be used for distinguishing between models. The BCU has a Ethernet connection, two status LED and a connection of a GPS antenna and a Sub-Modul-Place for the GPS-Receiver.



Picture 25: Front Panel Assignment of the BCU.

NovaTec S5+ Page 45
Version 1.0

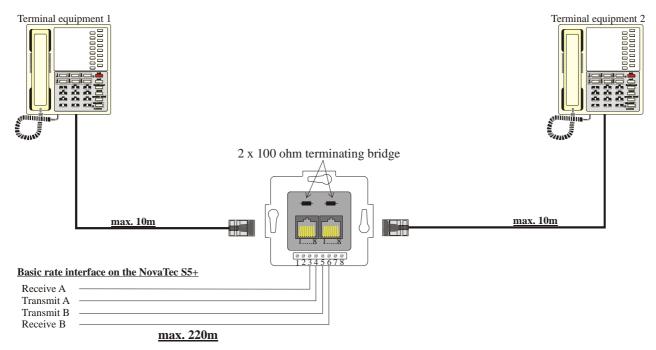
Signal Assignment of the Telecommunications Sockets for inhouce installations. 4.11

This chapter describes the signal assignment of the telecommunications sockets in the field and at the patch panel. This information is necessary to enable you to connect the terminal equipment plugs in accordance with the signal assignment.

Picture 26: External view of the telecommunications sockets #: The patch panel provides only RJ45

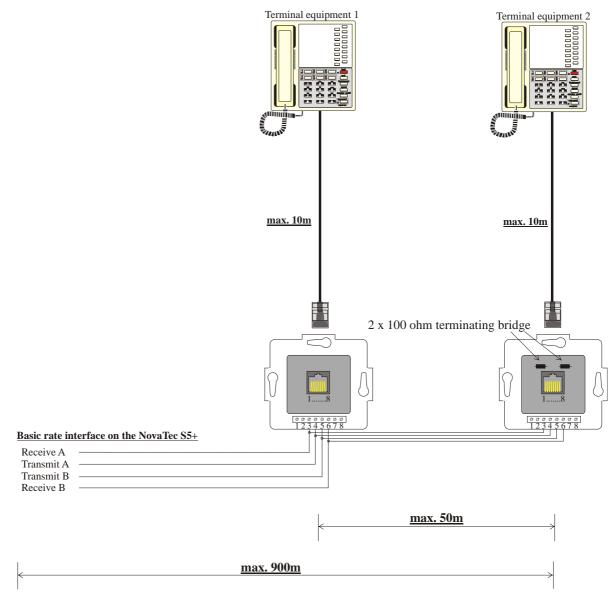
Page 46

Version 1.0


	Standard signal assignment of RJ sockets						
Pin	PRA interface RJ45 (view on NT)	BRA interface RJ45 (view on NT)	U interface RJ11	U interface RJ9			
1	Transmit A	not used	not used	not used			
2	Transmit B	not used	not used	U wire A			
3	not used	Receive A	U wire A	U wire B			
4	Receive A	Transmit A	U wire B	not used			
5	Receive B	Transmit B	not used				
6	not used	Receive B	not used				
7	Power supply if necessary	not used					
8	Power supply if necessary	not used					
	Signal assig	nment on the TMC	S patch panel (if us	ed)			
Pin	PRA interface RJ45	BRA interface RJ45	U interface RJ12	U interface RJ11			
1	not used	not used	not used	not used			
2	not used	not used	not used	U wire A			
3	Transmit A	Transmit A	U wire A	U wire B			
4	Receive A	Receive A	U wire B	not used			
5	Receive B	Receive B	not used				
6	Transmit B	Transmit B	not used				
7	not used	not used					
8	not used	not used					

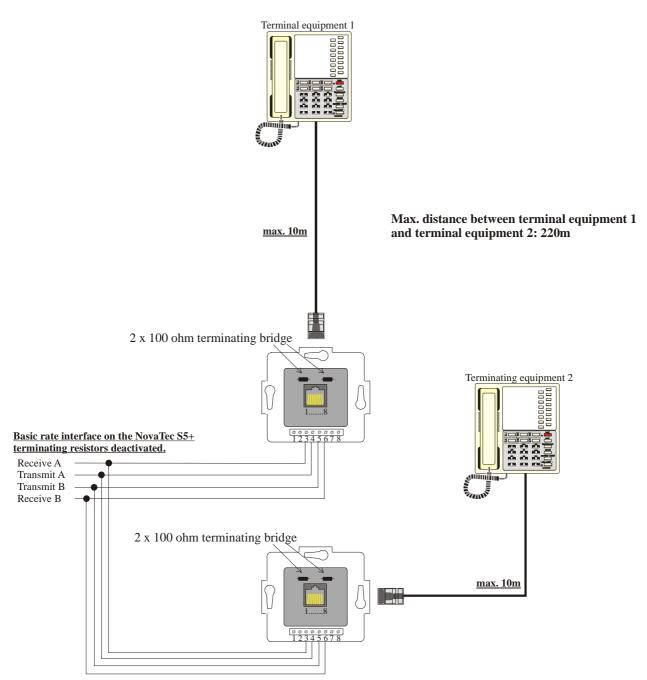
Connecting the Interfaces 4.12

This chapter describes how the respective interfaces of the NovaTec S5+ must be wired and connected together with activities requiring particular care and attention.


Connection of ISDN Terminal Equipment to the BRA Interface

Up to two items of terminal equipment can be connected to every NovaTec S5+ (as a PABX) BRA interface. The interface consists of 4 wires that must not be inter-changed. The maximum length of these wires is approximately 220 m. The end of the line that is not connected to the NovaTec S5+ must be terminated with 2 x 100 ohm. The following illustration shows the wiring and corresponding limiting values in this context.

Picture 27: Terminal equipment connection to an ISDN socket (passive bus)


Page 48 NovaTecS5+ It is possible to connect up to 12 ISDN sockets to each NovaTec S5+ BRA interface. These sockets are simply connected in parallel configuration. A maximum of two items of terminal equipment can be connected to each NovaTec S5+ BRA interface at the same time even if more ISDN sockets are mounted. The terminating resistor must be located only in the last socket. The following illustration shows the wiring of several sockets in this context.

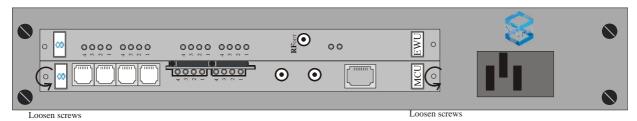
Picture 28: Multiple items of terminal equipment connected to several ISDN sockets (extended passive bus)

4.12.2 Star-shaped (Category 5) Cabling Connection

If your building cabling operates using a star-shaped cabling format, the terminating resistors in your NovaTec S5+ must be deactivated. This deactivation must be undertaken separately for every port concerned. In order to do this, first determine on which of the NovaTec S5+ modules the one or more terminating resistors must be deactivated. The following illustration gives an example of how a star-shaped cabling connection could be applied.

Picture 29: Star-shaped cabling for a BRA interface

Page 50 NovaTec S5+

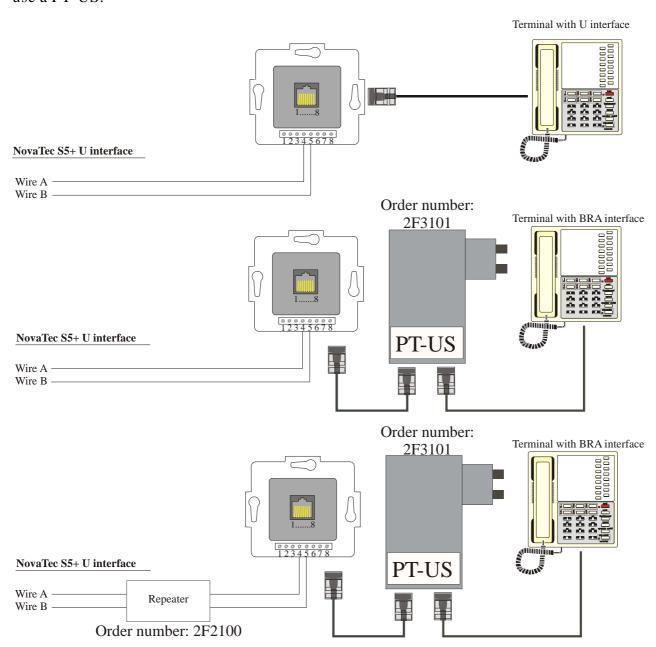

To deactivate the terminating resistors please follow these instructions:

Remove the selected module from the system. On the left and right corner of each front panel is a flexible handle with a screw next to it. Loose this screw. You can then remove the module by moving both handles outwards.

On each module (CCU and CAU only) there are several coding switches which will enable you to deactivate or activate the terminating resistors for each interface. These switches are grouped in blocks of four switches, whereby every pair of switches is dedicated to one interface. This means that the switches numbered 1 and 2 form an interface and the switches numbered 3 and 4 form another interface. The two switches for any particular interface must always be set in the same position. When the switches are in the "Off" position the terminating resistors are deactivated.

The illustrations on pages 24 and 38 shows the position of these blocks of coding switches. Next, please identify for which interface you must deactivate the terminating resistors. Please use the illustrations on pages 24 and 38 to assist you in identifying and repositioning the respective coding switches to the "Off" position. The terminating resistors only have to be deactivated when using a star-shaped installation (see page 50).

On delivery, all terminating resistors are activated.



Picture 30: Removing a Module from the NovaTec S5+

Connecting the Terminals to the ULU or PTI 4.12.3

The ULU (PTI) contains four U interfaces. One U interface is a two-wire interface, where both wires are interchangeable.

Any equipment with an U interface e. g. telephones, repeaters etc., can be connected and operated from this U interface. In situations where you need a U interface for long distances to the terminal equipment or where BRA interfaces are required, we recommend you to use a PT-US.

Picture 31: Connecting one PT-US to the ULU (PTI)

4.12.4 Trunk Line Connections to the CCU

A trunk line must be held on an NTPM or an PABX. This NTPM or PABX provides you with a PRA interface. These types of PRA interface trunk lines can only be used in conjunction with the CCU and CAU dependent configurations of the NovaTec S5+. If your NovaTec S5+ has an integrated U interface, an NTPM is not necessary and you can connect your trunk line directly to the respective interface of the system. The trunk lines are patched to a signed RJ45 plug within the system patch panel (only available in devices with cabinet) in the cabinet.

Trunk (U_{2M}) —————		Receive A	
Trunk (U_{2M}) —	NTPM	Transmit A	to CCII (primary rata)
Trunk (U_{2M}) —	$ \mathbf{N} \mathbf{F} \mathbf{V} $	Transmit B	to CCU (primary rate)
Trunk (U _{2M}) —		Receive B	

Picture 32: Connecting a trunk line to the NovaTec S5+

NovaTec S5+ Page 53
Version 1.0

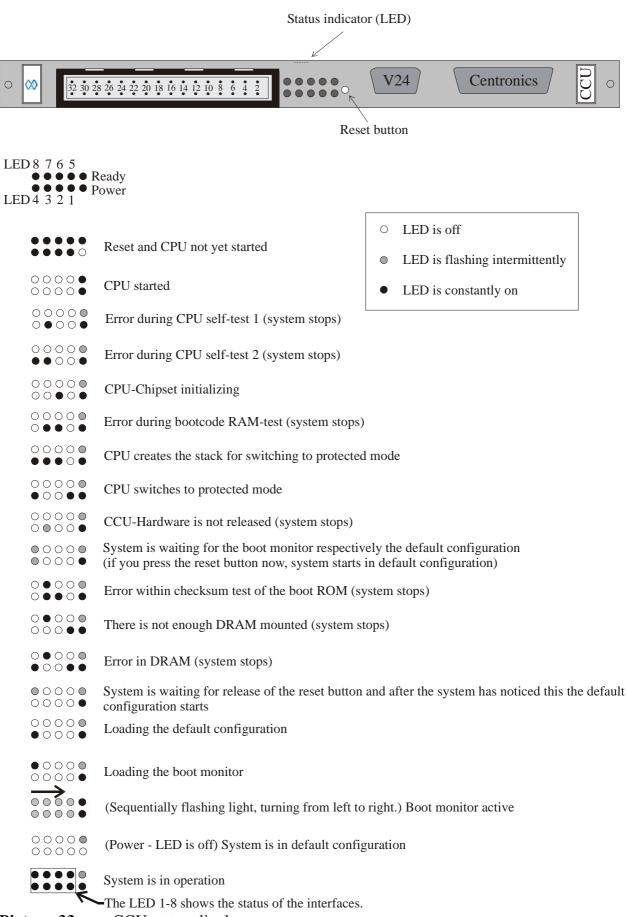
5.0 Commissioning

Before you put the NovaTec S5+ into operation, you should have undertaken all steps described in this handbook. This means, that you have connected the earth line, the trunk lines, the terminal line and the Antennas. Commissioning takes place when the main plug is inserted into the designated three pin socket. Assuming the GSM slide in modules and the CCU of NovaTec S5+ has been configurated, it is ready for use after booting for approximately 2 minutes.

5.1 Status displays on the NovaTec S5+

Each individual module has light emitting diodes located on the front panel which indicates the operational mode. This display mainly serves to assist diagnosis in cases of propblems or to monitor the functions of the NovaTec S5+.

5.1.1 Status displays on the CCU and CCU-Light


The CCU status display allows you to follow the individual diagnosis steps during the booting phase on commencing operational mode. You can also see when the system is in default mode due to missing configurations. Thus, you can recognize all possible stages of operation by observing the light emitting diodes on the CCU.

Upon connecting the NovaTec S5+ to the main supply, the system undertakes a processor test followed by a RAM- and firmware test. When there is a valid configuration, the system then moves into operational mode. In cases where there is no configuration, the system starts up in the default configuration (Power-LED is off). This means that only the first two BRA interfaces and the first PRA interface of the CCU is being activated. The operational mode "boot monitor active" can only be activated by a service technician using a PC connected to the V.24/RS232 interface of the CCU in the NovaTec S5+.

If the NovaTec S5+ starts in the default configuration, a valid configuration must be transmitted through downloading. Downloading can be undertaken either locally, via the V.24 or ISDN interfaces, or remotely via the public telecommunications network. After downloading is completed, the system resets itself and starts up using the previously transmitted configuration. At the first commissioning, the system commences with a test configuration that is used by the supplier as a quality control check. For this reason it is imperative that the download procedure is undertaken.

If a modified configuration is being transmitted during the running operation, the level of changes will determine whether or not the system undertakes a restart. As a precaution, you should undertake the download procedure at a time that avoids high levels of data transmission activity because connections will be interrupted should the system require a restart.

Page 54 NovaTec S5+

Picture 33: CCU status display

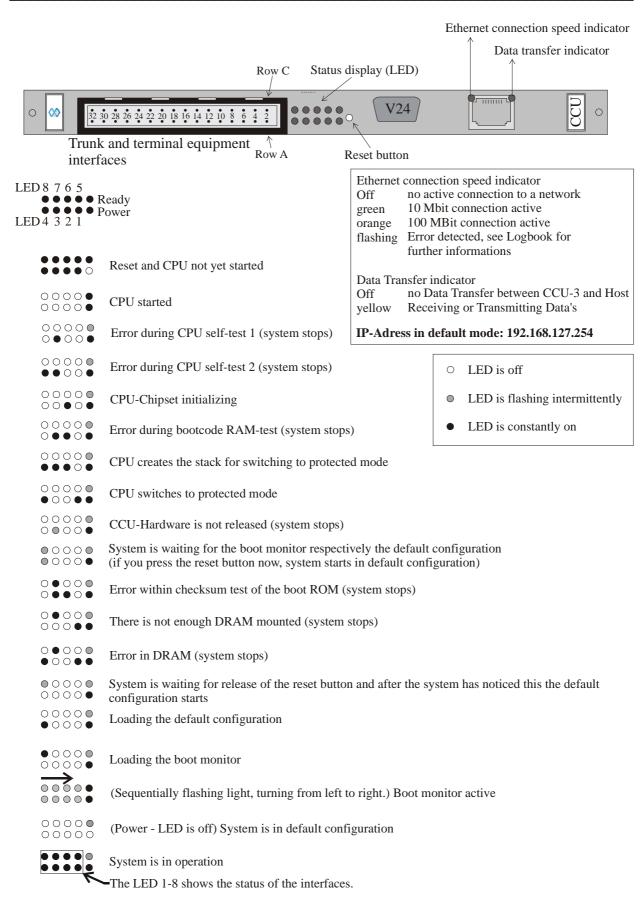
NovaTec S5+ Page 55 Version 1.0 After the boot process the status of each individual line interface of CCU is displayed by the status of the LED. If the layer one of an interface is activated, the appropriate LED turns steady on. In case the layer one of the interface is deactivated so the LED turns off.

The CCU contains 4 ISDN BRI / S interfaces on board and a plug in space for one daughter board. The LED status of the CCU is dependent of the daughter board placed and configured into it. The following table shows the status and the meaning of the LEDs of the CCU in normal mode (non default mode):

Interface	LED	Line status	LED status
1	1	Layer one active	LED is on
1	1	Layer one inactive	LED is off
2	2	Layer one active	LED is on
2	2	Layer one inactive	LED is off
2	2	Layer one active	LED is on
3	3	Layer one inactive	LED is off
4	4	Layer one active	LED is on
4	4	Layer one inactive	LED is off
	BRI / S ₀ daughte	er board is placed	
5	۶	Layer one active	LED is on
5	5	Layer one inactive	LED is off
		Layer one active	LED is on
6	6	Layer one inactive	LED is off
7	7	Layer one active	LED is on
7	7	Layer one inactive	LED is off
0	0	Layer one active	LED is on
8	8	Layer one inactive	LED is off
	PRI / S _{2M} daughte	er board is placed	
		Layer one active	LED is on
5	5	Layer one inactive	LED is off
		Layer one active	LED is on
6	6	Layer one inactive	LED is off
/	7	n. c.	n. c.
/	8	n. c.	n. c.

5.1.2 Status displays on the CCU-3

The CCU-3 status display allows you to follow the individual diagnosis steps during the booting phase on commencing operational mode. You can also see when the system is in default mode due to missing configurations. Thus, you can recognize all possible stages of operation by observing the light emitting diodes on the CCU-3. (see also Picture 34)


Upon connecting the NovaTec S5+ to the main supply, the system undertakes a processor test followed by a RAM- and firmware test. When there is a valid configuration, the system then moves into operational mode. In cases where there is no configuration, the system starts up in the default configuration (Power-LED is off). This means that only the first two BRA interfaces and the first PRA interface of the CCU-3 is being activated and the Ethernet-Interface works with the last known IP-Adress. Has the Modul set into default mode by using the Reset-Switch or Trace-Info-Client, then the CCU-3 starts also in default mode but with the IP-Adress 192.168.127.254.

If the NovaTec S5+ starts in the default configuration, a valid configuration must be transmitted through downloading. Downloading can be undertaken either locally, via the ISDN interfaces or IP, or remotely via the public telecommunications network or IP network. After downloading is completed, the system resets itself and starts up using the previously transmitted configuration. At the first commissioning, the system commences with a test configuration that is used by the supplier as a quality control check. For this reason it is imperative that the download procedure is undertaken.

If a modified configuration is being transmitted during the running operation, the level of changes will determine whether or not the system undertakes a restart. As a precaution, you should undertake the download procedure at a time that avoids high levels of data transmission activity because connections will be interrupted should the system require a restart.

After the boot process the status of each individual line interface of CCU-3 is displayed by the status of the LED. If the layer one of an interface is activated, the appropriate LED turns steady on. In case the layer one of the interface is deactivated so the LED turns off.

The CCU-3 contains two plug in space for one daughter board each and an ethernet interface. The LED status of the CCU-3 is dependent of the daughter board placed and configured into it. The following table shows the status and the meaning of the LEDs of the CCU-3 in normal mode (non default mode):

Picture 34: CCU-3 status display

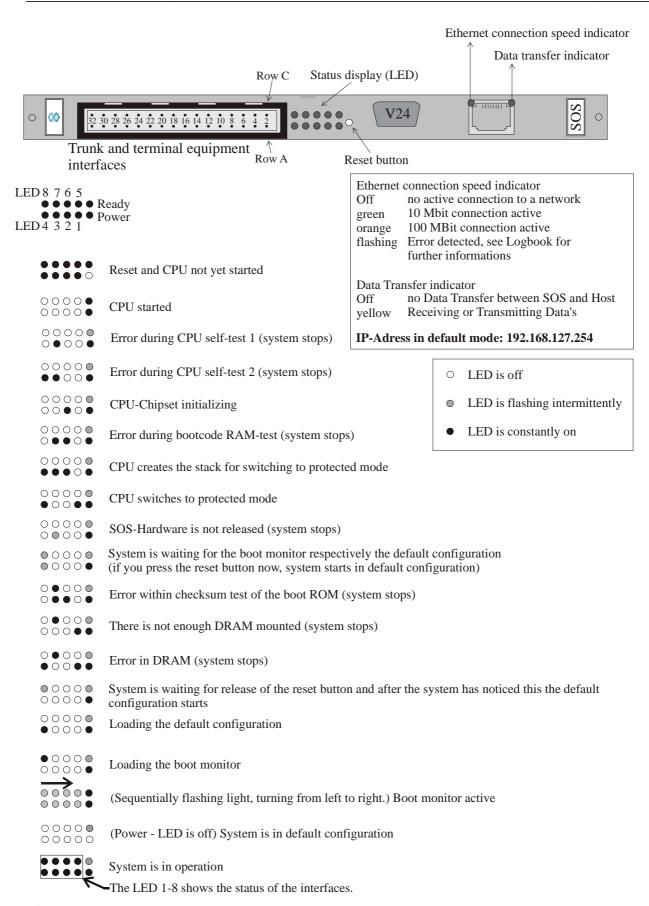
Interface	LED	Line status	LED status
BR	I / S ₀ daughter boa	rd is placed (Place	1)
1	1	Layer one active	LED is on
1	1	Layer one inactive	LED is off
2	2	Layer one active	LED is on
2	2	Layer one inactive	LED is off
3	2	Layer one active	LED is on
3	3	Layer one inactive	LED is off
4	4	Layer one active	LED is on
4	4	Layer one inactive	LED is off
PRI	/ S _{2M} daughter boa	ard is placed (Place	1)
1	1	Layer one active	LED is on
1	1	Layer one inactive	LED is off
2	2	Layer one active	LED is on
2	2	Layer one inactive	LED is off
3	3	n. c.	n. c.
4	4	n. c.	n. c.
BR	I / S _o daughter boa	rd is placed (Place 2	2)
_		Layer one active	LED is on
5	5	Layer one inactive	LED is off
_		Layer one active	LED is on
6	6	Layer one inactive	LED is off
7	7	Layer one active	LED is on
7	7	Layer one inactive	LED is off
0	0	Layer one active	LED is on
8	8	Layer one inactive	LED is off
PRI	/ S _{2M} daughter boa	ard is placed (Place	2)
_	_	Layer one active	LED is on
5	5	Layer one inactive	LED is off
		Layer one active	LED is on
6	6	Layer one inactive	LED is off
/	7	n. c.	n. c.
/	8	n. c.	n. c.

Note:

When an PRI-Plug-in card with only one PRI-Interface is used, 2 and/or. 6 are not occupied.

5.1.3 Status displays on the Sea-Of-Sims (SOS)

The SOS status display allows you to follow the individual diagnosis steps during the booting phase on commencing operational mode. You can also see when the system is in default mode due to missing configurations. Thus, you can recognize all possible stages of operation by observing the light emitting diodes on the SOS. (see also Picture 35)


Upon connecting the NovaTec S5+ to the main supply, the system undertakes a processor test followed by a RAM- and firmware test. When there is a valid configuration, the system then moves into operational mode. In cases where there is no configuration, the system starts up in the default configuration (Power-LED is off). This means that only the first two BRA interfaces and the first PRA interface of the SOS is being activated and the Ethernet-Interface works with the last known IP-Adress. Has the Modul set into default mode by using the Reset-Switch or Trace-Info-Client, then the SOS starts also in default mode but with the IP-Adress 192.168.127.254

If the NovaTec S5+ starts in the default configuration, a valid configuration must be transmitted through downloading. Downloading can be undertaken via the IP interface. After downloading is completed, the system resets itself and starts up using the previously transmitted configuration. At the first commissioning, the system commences with a test configuration that is used by the supplier as a quality control check. For this reason it is imperative that the download procedure is undertaken.

If a modified configuration is being transmitted during the running operation, the level of changes will determine whether or not the system undertakes a restart. As a precaution, you should undertake the download procedure at a time that avoids high levels of data transmission activity because connections will be interrupted should the system require a restart.

After the boot process the status of each individual line interface of SOS is displayed by the status of the LED. If the layer one of an interface is activated, the appropriate LED turns steady on. In case the layer one of the interface is deactivated so the LED turns off.

The SOS contains two plug in space for one daughter board each and an ethernet interface. The LED status of the SOS is dependent of the daughter board placed and configured into it. The following table shows the status and the meaning of the LEDs of the SOS in normal mode (non default mode):

Picture 35: SOS status display

NovaTec S5+ Page 61 Version 1.0

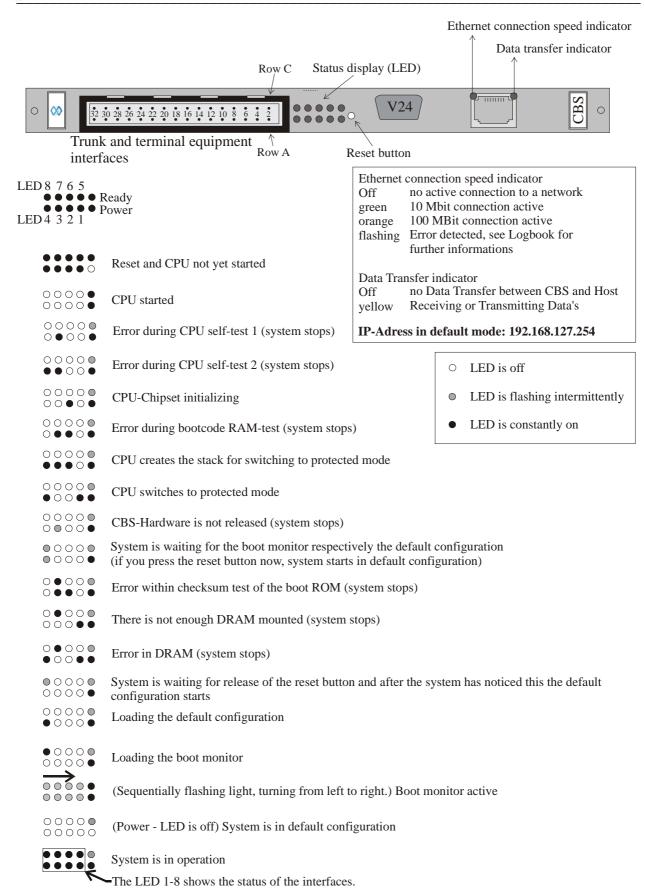
Interface	LED	Line status	LED status
BR	I / S ₀ daughter boa	rd is placed (Place	1)
1	1	Layer one active	LED is on
1	1	Layer one inactive	LED is off
2	2	Layer one active	LED is on
2	2	Layer one inactive	LED is off
2	2	Layer one active	LED is on
3	3	Layer one inactive	LED is off
4	4	Layer one active	LED is on
4	4	Layer one inactive	LED is off
PRI	/ S _{2M} daughter boa	ard is placed (Place	1)
1	1	Layer one active	LED is on
1	1	Layer one inactive	LED is off
2	2	Layer one active	LED is on
2	2	Layer one inactive	LED is off
3	3	n. c.	n. c.
4	4	n. c.	n. c.
BR	I / S ₀ daughter boa	rd is placed (Place 2	2)
_	_	Layer one active	LED is on
5	5	Layer one inactive	LED is off
-	E	Layer one active	LED is on
6	6	Layer one inactive	LED is off
7	7	Layer one active	LED is on
,	,	Layer one inactive	LED is off
8	8	Layer one active	LED is on
0	0	Layer one inactive	LED is off
PRI	/ S _{2M} daughter boa	ard is placed (Place	2)
5		Layer one active	LED is on
	5	Layer one inactive	LED is off
6	6	Layer one active	LED is on
	<u> </u>	Layer one inactive	LED is off
/	7	n. c.	n. c.
/	8	n. c.	n. c.

Note:

When an PRI-Plug-in card with only one PRI-Interface is used, 2 and/or. 6 are not occupied.

5.1.4 Status displays on the Call-Back-Server (CBS)

The CBS status display allows you to follow the individual diagnosis steps during the booting phase on commencing operational mode. You can also see when the system is in default mode due to missing configurations. Thus, you can recognize all possible stages of operation by observing the light emitting diodes on the CBS. (see also Picture 36)


Upon connecting the NovaTec S5+ to the main supply, the system undertakes a processor test followed by a RAM- and firmware test. When there is a valid configuration, the system then moves into operational mode. In cases where there is no configuration, the system starts up in the default configuration (Power-LED is off). This means that only the first two BRA interfaces and the first PRA interface of the CBS is being activated and the Ethernet-Interface works with the last known IP-Adress. Has the Modul set into default mode by using the Reset-Switch or Trace-Info-Client, then the CBS starts also in default mode but with the IP-Adress 192.168.127.254.

If the NovaTec S5+ starts in the default configuration, a valid configuration must be transmitted through downloading. Downloading can be undertaken via the IP interface. After downloading is completed, the system resets itself and starts up using the previously transmitted configuration. At the first commissioning, the system commences with a test configuration that is used by the supplier as a quality control check. For this reason it is imperative that the download procedure is undertaken.

If a modified configuration is being transmitted during the running operation, the level of changes will determine whether or not the system undertakes a restart. As a precaution, you should undertake the download procedure at a time that avoids high levels of data transmission activity because connections will be interrupted should the system require a restart.

After the boot process the status of each individual line interface of CBS is displayed by the status of the LED. If the layer one of an interface is activated, the appropriate LED turns steady on. In case the layer one of the interface is deactivated so the LED turns off.

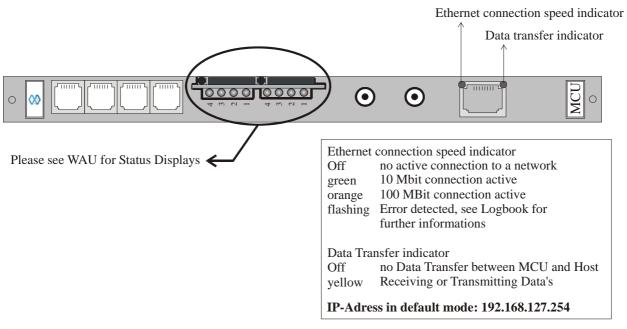
The CBS contains two plug in space for one daughter board each and an ethernet interface. The LED status of the CBS is dependent of the daughter board placed and configured into it. The following table shows the status and the meaning of the LEDs of the CBS in normal mode (non default mode):

Picture 36: CBS status display

Interface	LED	Line status	LED status
BR	I / S ₀ daughter boa	rd is placed (Place	1)
1	1	Layer one active	LED is on
1	1	Layer one inactive	LED is off
2	2	Layer one active	LED is on
2	2	Layer one inactive	LED is off
2	2	Layer one active	LED is on
3	3	Layer one inactive	LED is off
4	4	Layer one active	LED is on
4	4	Layer one inactive	LED is off
PRI	/ S _{2M} daughter boa	ard is placed (Place	1)
1	1	Layer one active	LED is on
1	1	Layer one inactive	LED is off
2	2	Layer one active	LED is on
2	2	Layer one inactive	LED is off
3	3	n. c.	n. c.
4	4	n. c.	n. c.
BR	I / S ₀ daughter boa	rd is placed (Place 2	2)
5	5	Layer one active	LED is on
3	3	Layer one inactive	LED is off
6	6	Layer one active	LED is on
0	0	Layer one inactive	LED is off
7	7	Layer one active	LED is on
,	,	Layer one inactive	LED is off
8	8	Layer one active	LED is on
8	8	Layer one inactive	LED is off
PRI	/ S _{2M} daughter boa	ard is placed (Place	2)
5	5	Layer one active	LED is on
	3	Layer one inactive	LED is off
6	6	Layer one active	LED is on
	3	Layer one inactive	LED is off
/	7	n. c.	n. c.
/	8	n. c.	n. c.

Note:

When an PRI-Plug-in card with only one PRI-Interface is used, 2 and/or. 6 are not occupied.


5.1.5 Status displays on the MCU

Upon connecting the NovaTec S5+ to the main supply, the system undertakes a processor test followed by a RAM- and firmware test. When there is a valid configuration, the system then moves into operational mode. In cases where there is no configuration, the system starts up in the default configuration. This means that only the first two BRA interfaces and the first PRA interface of the MCU is being activated and the Ethernet-Interface works with the last known IP-Adress. Has the Modul set into default mode by using the Trace-Info-Client, then the MCU starts also in default mode but with the IP-Adress **192.168.127.254**.

If the NovaTec S5+ starts in the default configuration, a valid configuration must be transmitted through downloading. Downloading can be undertaken via the IP interface. After downloading is completed, the system resets itself and starts up using the previously transmitted configuration. At the first commissioning, the system commences with a test configuration that is used by the supplier as a quality control check. For this reason it is imperative that the download procedure is undertaken.

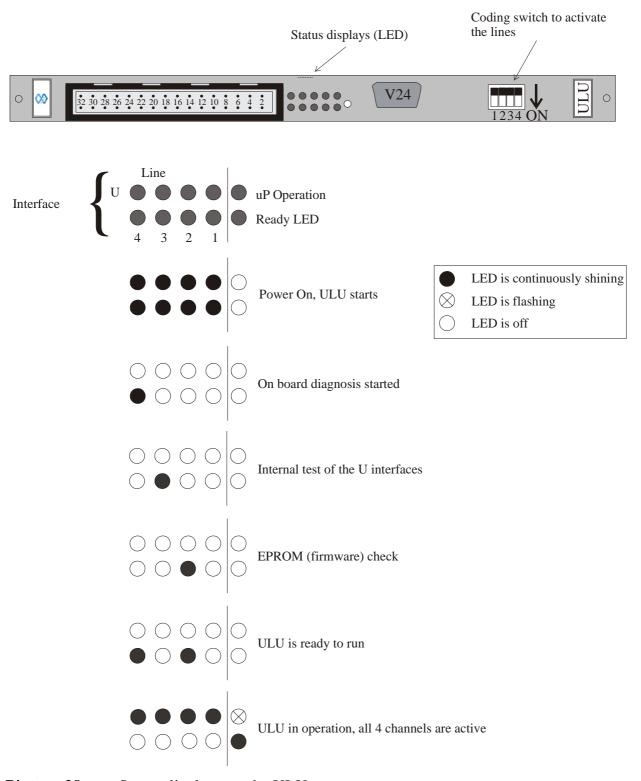
If a modified configuration is being transmitted during the running operation, the level of changes will determine whether or not the system undertakes a restart. As a precaution, you should undertake the download procedure at a time that avoids high levels of data transmission activity because connections will be interrupted should the system require a restart.

The status indicators of the MCU are limited to the displays on the GSM-2 Sub module and the Ethermet Interface. The displays of the operations mode and the diagnosis of the GSM-2 Sub module correspond to those of the WAU. In order to determine further operating and diagnostic conditions of the MCU, a connection with the trace info Client is required. If you need to change the IP address of the MCU in the configuration, then you should document these carefully. With an incorrect IP address you may not gain access to the MCU.

Picture 37: MCU status display

Page 66 NovaTec S5+

5.1.6 Status displays on the ULU


The uP LED displays by flashing that the processor is in operation. The Power LED shows by continuous shining that all switches of the coding switch are in the on position, layer 1 is ready.

The status of layer 1 can be identified for each interface independently (see picture 38) via the 4 LED's which are positioned next to the μP LED. The lower LEDs have no meaning and are not connected. The upper LEDs show the layer one status of each individual line of the board. (see Picture 38). When layer 1 is activated the LED's are continuous shining. In case of an error they are flashing and the Ready LED extinguishes. Is for example layer 1 of an U interface out of action the concerned U LED is flashing and the Power or ready LED is off.

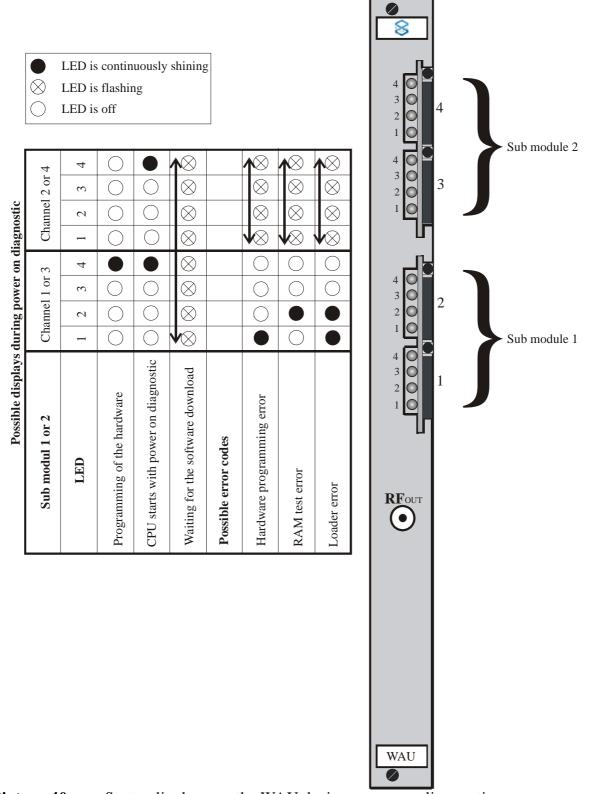
In operation condition the uP LED flashes continuously. The Ready LED and the appropriate LED's of the activated interfaces are continuously shining. When there are one or more lines deactivated by the coding switch the associated LED's are off.

After switching on the System, every ULU starts an on board diagnosis. During this procedure the system tests all components of the U interface and then all other internal components. If there is an error detected the concerned ULU executes a reset and then starts a new test. If the fifth trial is not successful the test stops and a error code appears on the LED's. Is the EPROM test negative, there will not be a further test, the system stops and a error code appears on the LED's.

NovaTec S5+ Page 67
Version 1.0

Picture 38: Status displays on the ULU

5.1.7 Status displays on the CAU


The Status of the CAU is shown by four LED's. The LED's 1-3 show the status of the expansion boards on the CAU. If there is a match between the placed expansion board and the appropriate system configuration, the associated LED will light up after booting of the system. If there is a mismatch the LED will not light up after booting of the system. The LED 1 is associated to the expansion slot one and LED 2 to the expansion slot two and the LED 3 to the expansion slot three (see Picture 39).

Picture 39: Status displays on the CAU

5.1.8 Status displays on the WAU

The LEDs located on the sub modules show the status of the WAU in two stages. The first stage is after the power on reset of the system or after sliding the WAU into the back plane. The second stage is after the download of the configration into the sub modules. For the first stage the following status is reported:

Picture 40: Status displays on the WAU during power on diagnostic

	LED is continuously shining
\otimes	LED is flashing
	LED is off

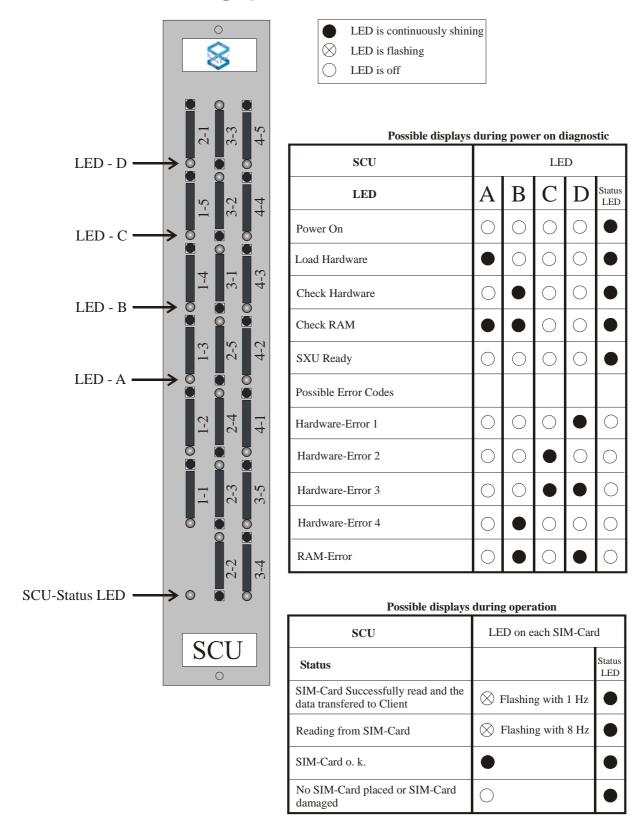
LED status after card boot and diagnostic

	LED 4	LED 3	LED 2	LED 1
The Module is in the loading or configuration stage	\otimes	0	\circ	0
Configuration loaded, but the SIM is missing	0	\otimes	0	0
- Configuration o.k. - SIM o.k. - PIN failed	\otimes	\otimes		0
- Configuration o.k. - SIM o.k. - PIN wrong			\otimes	
- No provider available - To low receive level - To high bit error rate	\otimes		\otimes	
- Card is empty or not released	\bigcirc	\otimes	\otimes	
 Hardware trouble: The GSM engine causes error; The UARTs cause error; There is or are some minor malfunctions which does not allow the normal operation. 	\otimes	\otimes	\otimes	0

LED status during running mode

	LED 4	LED 3	LED 2	LED 1	
Field level 13% - 25% of max.					\otimes
Field level 26% - 50% of max.					\otimes
Field level 51% - 75% of max.					\otimes
Field level 76% - 100% of max.					\otimes

The signal level indication is steady on in running mode and shows the ratio of the receive signal level to the maximum possible receive signal level in percentage.


In a connection mode the signal level indications LED4, LED3 and LED2 keep steady on and the LED1 starts to flash.

Picture 41: Status displays on the WAU after Power-On diagnostic

RFOUT WAU

NovaTec S5+ Page 71
Version 1.0

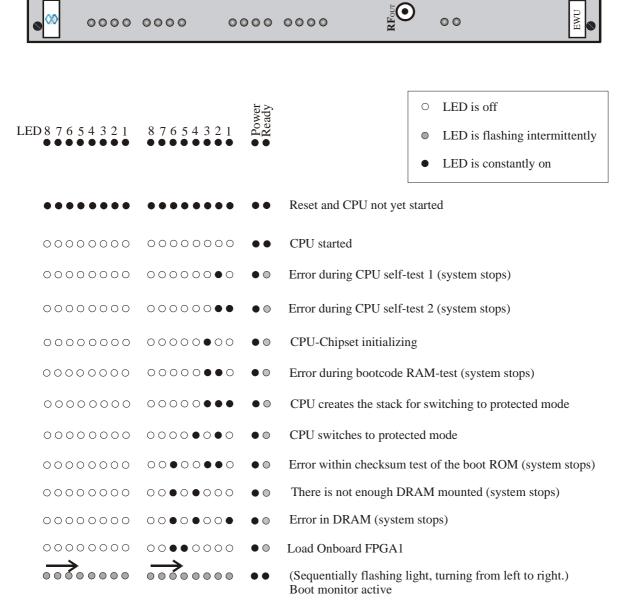
5.1.9 Status Displays on the SCU

Picture 42: Status displays on the SCU

For operation of a SIM-Server two NMG systems are required, the SIM-Server and the SIM-Client. The Sim-Client will be equipped with a CCU-3 and EWU's. This realises the NMG's access to the GSM Network. The SIM-Server consists of at least one SCU and the SOS. The SCU serves as a carrier for the SIM-Cards.

The IP interface of the CCU-3 of the NMG is network with the IP interface of the SOS of the Sim server over the Internet. Thus it is ensured that the EWU has access to the data of the Sim Cards in the SCU and is able to use this data.

The NMG can also be equipped with WAU's, althought the WAU's have no remote access to the SIM-cards within the Sim-Server.


The Sim Client requests data of the Sim Card selected by the Sim server. This data is transmitted from the Sim server to the Sim Client and used for the connection establishment.

With the start-up of the SIM server the SCU accomplishes first an on board diagnosis. After this is completed, the assigned Sim Cards are identified, in which a part of the data is read (fast flashing LED's at the respective drawer signify this).

If the Sim Client requests the complete data of the Sim card, these will be completely read by the Sim server. This complete read out can take up to 20 - 40 seconds depending on the contents of the Sim Card, you should ensure that no Telephone book or SMSs are stored on the Sim card as this will prolong the readout and the loading time. After the complete readout of the Sim Card the data will be transferred from the Sim server to the Sim Client for its further use.


5.1.10 Status Displays on the EWU


The LEDs show the status of the EWU in two stages. The first stage is after the power on reset of the system or after sliding the EWU into the back plane. The second stage is after the download of the configration into the module. For the first stage the following status is reported:

Picture 43: Status displays on the EWU during power on diagnostic

Page 74 NovaTecS5+

LED status after card boot and diagnostic

	LED 4	LED 3	LED 2	LED 1
The Module is in the loading or configuration stage			\bigcirc	\bigcirc
Configuration loaded, but the SIM is missing	0	0	0	0
- Configuration o.k. - SIM o.k. - PIN failed			0	0
- Configuration o.k. - SIM o.k. - PIN wrong		0		
No provider availableTo low receive levelTo high bit error rate				0
- Card is empty or not released	\circ			0
 Hardware trouble: The GSM engine causes error; The UARTs cause error; There is or are some minor malfunctions which does not allow the normal operation. IMEI not valid. 				0

- O LED is off
- LED is flashing intermittently
- LED is constantly on

LED status during running mode

	LED 4	LED 3	LED 2	LED 1	
Field level 13% - 25% of max.		\bigcirc			
Field level 26% - 50% of max.	\bigcirc	\bigcirc			
Field level 51% - 75% of max.				•	
Field level 76% - 100% of max.		•			

The signal level indication is steady on in running mode and shows the ratio of the receive signal level to the maximum possible receive signal level in percentage.

In a connection mode (Voice or SMS) the signal level indications LED4, LED3 and LED2 keep steady on and the LED1 starts to flash.

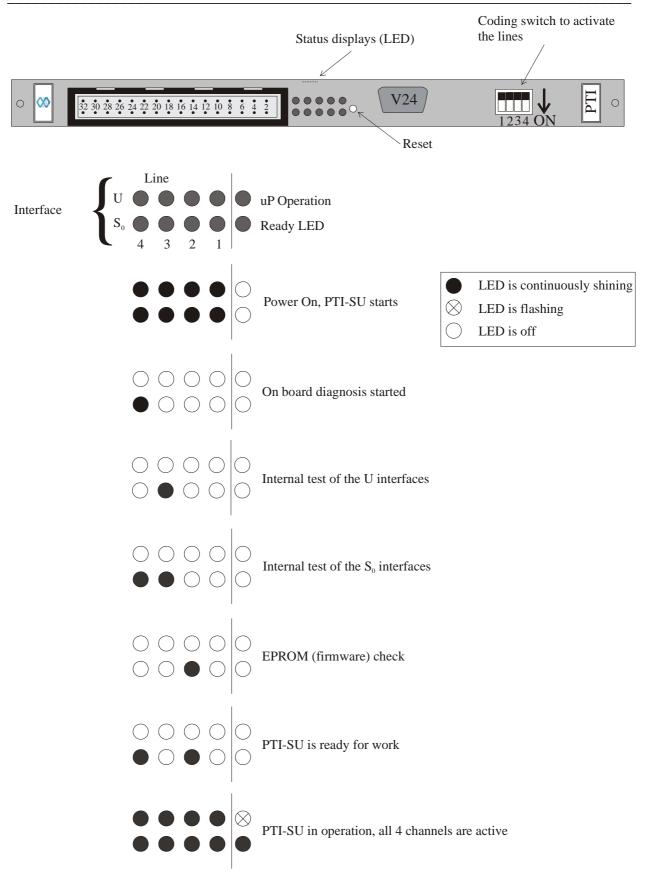
Picture 44: Status displays on the EWU after Power-On diagnostic

NovaTec S5+ Page 75
Version 1.0

5.1.11 Status displays of the PTI

At the face plate PTI has light emitting diodes which indicate the operational mode. These light emitting diodes are splitted into two functional sections. The green light emitting diodes indicates operation condition of the processor (Ready LED) and the power supply on the U interfaces (Power LED). The red light emitting diodes indicates the state of layer 1 for every channel of the \mathbf{S}_0 and U interface.

The uP LED displays by flashing that the processor is in operation. The Power LED shows by continuous shining that all switches of the coding switch are in the on position, layer 1 is ready.

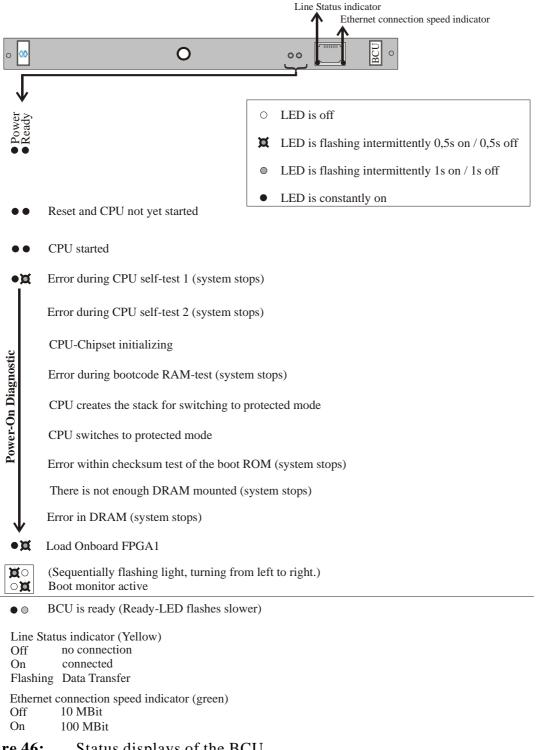

The status of layer 1 can be identified for each interface independently at the two red LED's which are placed next to each other. The left LED (Picture 45: lower one) communicates the status of layer 1 for the BRA interface and the right one (Picture 45: upper one) for the U interface. When layer 1 is activated the LED's are continuous shining. In case of an error they are flashing and the Ready LED extinguishes. Is for example layer 1 of an U interface out of action the concerned U LED is flashing and the Power LED is off.

When there is for example a short-circuit at the U interface, the LED of the concerned interface and the Ready LED starts flashing.

In operation condition the uP LED flashes continuously. The Ready LED and both LED's of the activated interfaces are continuously shining. When there are one or more lines deactivated by the coding switch the belonging LED's are off.

After switching on the System, every PTI-US starts an on board diagnosis. During this procedure the system tests all internal components of the U and then all internal components of the S interfaces. Is there an error detected the concerned PTI-SU is executing a reset and then starting a new test. If the fifth trial is not successful the test stops and a failure code appears at the LED's. Is the EPROM test negative, there will be no further test, the system stops and a failure code appears at the LED's.

Page 76 Version 1.0



Picture 45: Status displays of the PTI

NovaTec S5+ Page 77
Version 1.0

5.1.12 Status displays of the BCU

The LEDs show the status of the BCU in two stages. The first stage is after the power on reset of the system or after sliding the BCU into the back plane. The CPU starts an Power-On Diagnstic with several Steps (see Picture 46). If a fault happen, the CPU stops and shows the Error Message on the Front with the LED's. (Ready LED flashes with 0,5 s on/off). After 3 Sekonds the CPU starts again. If the Power-On Diagnistic passes, the BCU loads the configuration from the system and switch into the operating mode. The second stage is after the download of the configration into the module. For both stages the following status is reported:

Picture 46: Status displays of the BCU

5.2 Features of the Default Configuration

When a valid system configuration cannot be found following a system start, the NovaTec S5+ will always start in the default configuration. In these circumstances, as a client, you will retain use of the telephones, for limited applications, until a valid configuration has been defined. Being aware of this feature will enable you to take precautions against losing communication with the outside world while your system is in default mode.

Description of the default configuration:

Modul	Interface	Description	Port ID	Master/ Slave	Trunk/ Subscriber	PzP	PMP
CCU	1	BRA	F100	Slave	Trunk	X	
CCU	2	BRA	F101	Slave	Trunk		X
CCU	4	BRA	F903	Master	Subscriber		X
CCU Sub- Modul	5	PRA	F400	Slave	Trunk	X	

Default-IP-Adresses

On the CCU-3, SOS, CBS and MCU there is a difference between the default modes. If the modul went into default-mode and the reson was a faulty or missing configuration, the modul starts up with the last known IP-Adress, Netmask, DNS-IP and Gateway-IP.

If the reason for the default-mode is an user Reset-Switch or the trace-info client, then the modul starts up with the IP-Adress: **192.168.127.254**

The BCU has no default-IP adress. During the time the modul is not loaded, the Modul will have NO IP-Adress.

In any case, if the IP-Adress is unknown, you can use Network-Monitors (for example Ethereal) to find out the IP-Adress. Using the Network-Monitors on your own risk.

NovaTec S5+ Page 79
Version 1.0

5.3 Installing the Configuration Software

To install the configuration software, please connect a personal computer to the V.24/RS232//IP interface of the CCU or CCU-3 using the cord.

The set up program is designed for a PC operating with Microsoft Windows 2000/XP or NT. To initiate the configuration program, please insert the Setup CD and start Setup.EXE. Please follow the instructions displayed on the screen.

You can call up an on-screen topic related help text which provides further information, by pressing F1 on the keyboard of your PC.

Following installation of the NovaTec configuration program, a systems inquiry will ask whether the necessary components of Microsoft DAO Version 3.5 and ODBC Version 3.2 are installed. If these components are already installed on your computer, you do not need to install them from the CD.

To check this, click on **Office** and then on the **System Control** and **Software**. If DAO is already installed on your PC, it will be indicated here. If this is not the case, please install it from the installtion CD.

During installation of the required components from DAO and ODBC 3.2 it is possible that problems may occur. These problems are mainly caused by incorrectly installed or deinstalled programs which disturb files in the system folder of Windows 2000/XP/NT. This will be indicated through the error message, "Error while opening the databank". If this is the case, please follow the following procedure:

- De-install the TMG configuration programs
- Close all applications and tasks
- Re-execute the set up program
- Install the DAO and ODBC with minimal components
- If this does not resolve the problem, install the DAO manually, by executing the program SETUP in the folder DAO\DISK1.

Installation of the Electronic Data Transfer Adapter and TCP/IP

To enable you to transmit data to the NovaTec, the electronic data transfer adapter and the network protocol TCP/IP must be installed. To do this, undertake the following steps:

D 00

- Click on **Start** on the task bar.
- Select **System control**.
- Open the **Network** icon in the system control window.
- Previously installed components will be registered under "Configuration".
- The **Electronic Data Transfer Adapter** and **TCP/IP** should appear here. If this is not the case, please click on the "Add" button and then on "Network Board" and "Add".
- Now select the network card "Electronic Data Transfer Adapter" and confirm this with O.K.
- If your PC operates without a network, you can remove all components except for the electronic data transfer adaptor. If in doubt, leave all components activated.
- Next, make your selection under "Network Component Type" and using **Add** insert **Microsoft** as the supplier and **TCP/IP** for the network protocol. Confirm with O.K.
- For this procedure you need your Windows 2000/XP/NT installation CD.

Transmission of Configuration Data

Preparation of Configuration Data

Before transmitting the configuration to the system, the data must be processed. First, click on the menu **Configuration data**. Then select **Process**. The current configuration is now being processed. This procedure can take a couple of minutes.

NovaTec Network Services (Network Services)

To enable the configuration data to be transmitted to the System, you must start **the Network Services** first. To do this, select **Network Services** in your installation folder.

Transmission of the Configuration Data

After the configuration data has been successfully processed, it can be transmitted to the System. To do this go to **Configuration data** and select the item **Transfer to Target System**. Then go to the **Transfer Options** window and select the button **Transfer New Configuration** to **Target System** and **Reboot Target system** if **reconfiguration** is not possible.

.

Please enter your password and username in the following window. On delivery, there is no password and the username **Technik** should be entered.

Change of password

Please enter the username in the appropriate field and then enter the old password followed by a semi-colon (;), then the new password, another semi-colon (;) and then the new password again, for confirmation purposes.

Example:

Old password: old New password: new You enter: old;new;new

Should you forget your password, you can enter the System with the user name **Technik** and the password **NoPassWd**. Please note that under these circumstances, all data in the System will be automatically deleted, necessitating a new download from the PC.

For automatic remote maintenance, please ask for the network management system.

Local Maintenance via V.24/RS232

Adjustment of the Programming Interface

To connect to the system using the COM port please select "V.24" from "Network" in the "Establish Connection" window. The default COM port is COM2. If you like to use a different COM port for programming then you can change this setting using the Network Services.

Please start the Network Services if not already running. Right click on the blue icon in the Windows system tray and select "Settings" from the upcoming context menu. Under the "COM port settings" you can enable and disable the COM port (for use by NovaTec software), select a different COM port and select the baud rate for the COM port.

Remote Maintenance via ISDN

Requests to the ISDN card

To obtain remote maintenance services via ISDN a ISDN card that supports CAPI 2 version 2.0 or higher is required. This must be fully installed on your PC. Please install the ISDN card according to the manufacturers installation guidelines.

For correct operation we propose and support the AVM-Fritz-Card only. After successful installation please go to the "Establish Connection" window and select "ISDN" from the "Network" options. Then enter the phone number of the System in the field "Dialling no." and click on OK.

Should you wish to operate the System from a terminal equipment interface, please enter the phone number followed by a /TE. To be able to connect via ISDN the option "Activate ISDN (CAPI 2.0 installed)" must be activated in the Network Services settings.

Page 82 NovaTec S5+

There is a readme file on the CD to provide you with additional information for the installation process. For further information you can open the on-line help on the CD by double-clicking on the help icon or using the F1 button.

There is also a prepared standard configuration mdb file available on the CD for fast and easy start of the system.

Remote Maintenance via IP

Please make sure that the System that you want to configure is connected to the same network as the computer and that you have the necessary access rights

If this is not the case and the System is outside of your LAN then you need a computer with internet capabilities.

If the CCU is in the Default status the IP Address for the CCU3 is 192.168.127.254 For configuration of the computer Please ask your System administrator

5.4 Remarks to Callback Configuration

With the Fixed Net Callback application, two NovaTec systems are used. One system takes the role of the client and the other one of the server.

The client is installed behind or before the switch of the End customer. IT has the task of recognizing call back calls and passing them on to the server.

After contacting the server, the call will stay in an ALERTING state i.e. ringing. The call will stay in this stage until either the caller has aborted the call, i.e. laid down the reciever or until the call back has been received by the client. The client recognizes the callback call and and established the connection between the two partys.

The server waits for incoming call back calls. When a call back call is recieved and the server has checked the call is approved (permissions, routing etc.) the call back call and the target (dialled) number will be started simultaneously. When the target telephone rings the incoming call activation call from the client will be disconnected. The call costs will then be invoiced with the server end and not with the client.

Generally each NovaTec System can take over both the role of the client, however the server must be installed with the SOS board.

The ISDN network between clients and server must however fullfill certain technical requirements.

The Requirements depend on the used call back mode on the client side.

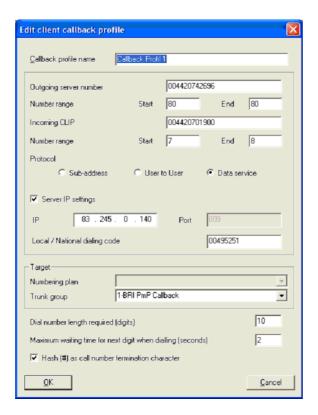
Requirements in the **Subaddress** Mode

The Network must pass through the CALPS (Calling Party Subaddress) from the Client to the Server.

- The Network must pass through the CLIP of the caller from the Client to the Server
- The Network must pass through the CALPS (Calling Party subaddress) from the Server to the Client
- The Server must make available a 1 or 2 digit DDI-Range, so the Index of the Call back Call can be sent to the Server as a DDI

Requirements in the User-to-User Mode

- the network must let the user to user IE through (in the setup message, corresponding to UUS1-Service) from the Client to the server
- · The Network must pass through the CLIP of the caller from the Client to the Server
- the network must let the user to user IE through (in the setup message, corresponding to UUS1-Service) from the server to the Client
- The Server must make available a 1 or 2 digit DDI-Range, so the Index of the Call back Call can be sent to the Server as a DDI


Requirements in the Data Service Mode

- The Network must pass through CALPS (Calling Party Subaddress) from Client to the Server For this purpose in this mode the service data is signalled
- The Network must pass through the CLIP of the caller from the Client to the Server
- In the information element Bearer Capability the service data between Server and Client is signalled in both directions signaled between servers and Client in both directions This signaling may not be
- The Network must pass through the CLIP of the Server from the Server to the client
- The Server must make available a 1 or 2 digit DDI Range, so the Index of the Call Back call and the service of the original call can be sent to the Server as a DDI.

Requirements when using the IP as a "fallback" or when the above services are not available

- The server system must be "visible" to the client via TCP/IP. This means that the company network and or firewall must be sentup to allow incoming connections to the system using port 809. This may include IP-Masquerading, and port forwarding for the system system.
- The server (SOS) must be correctly installed with valid IP information (IP address, Mask, DNS etc.

Configuration of the Clients

All Callback settings are carried out over Profiles, and as always all Profiles are first given a Profile name.

On the Client you should choose ",New Client" to create a new Client profile.

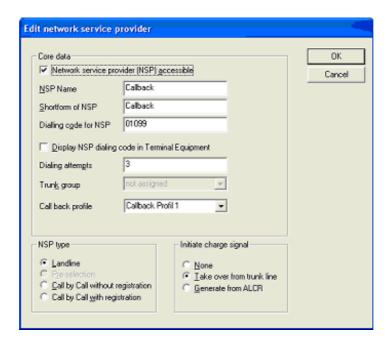
Under "Outgoing server number" the telephone number of the Servers should be given. Here the start and the end of the telephone number range for the outgoing calls to the server should be entered.

Under "Incoming CLIP" the Server number that the Client receives for a Call back call should be entered. The Telephone number range should include the incoming call number from the server. Normally the values for the outgoing calls and the callback calls should agree, if this is not the case or not possible due to technical reasons, different values may be configured.

Under "Protocol" it would be chosen between Sub-adress, User-To-User or Data Service. As mentioned earlier Subadressing is the first choice as no extra costs are incurred (at least not with Deutsche Telecom AG). In some countrys the Subadress will only come through when the Service data is Signalised (e.g. South Africa). In this case the Protocol "Data Service" should be chosen.

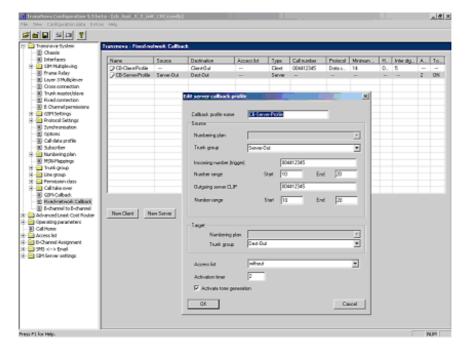
If the Data is to be transmitted over IP then the **Server IP settings** should be activated. Under IP the correct IP Address of the Server should be entered. Port 809 is permanently preconfigured. Under Local / National dialing code the international dialling code should be entered e.g.:

Paderborn Germany 00495251 Hamburg Germany 004940


NovaTec S5+ Page 85
Version 1.0

Under "Target" the routing settings are made. Here it must be guaranteed that the Client can find the Interface where the Server can be reached. (the Actual dialled number plays no role for the Routing!) The routing can either be over a Trunk group or the routing can be over a Call numbering plan. It must be guaranteed that the Servernumber is in the Call numbering plan, if this is not so then Callback is not possible.

The Settings "Dial number Length required", "Maximum waiting time for next digit when dialing" and "Hash (#) as call number termination character" drive the Call planning on Callback. Because the actual dialled number is not the number that is sent, but sent within the Subaddress, User-To-User or Data service Information, The dialling must follow as a Block dial. I.e. the Client must know when the call number is complete. The call number is considered as complete if:


- The number of dialled digits match the number within the settings for "Dial number Length required". In the case of Block dial where more digits are received, these will also be sent, the Number as Block dial will not be shortened.
- Since the last receipt of a digit corresponding to the "Maximum waiting time for next digit when dialing" is exceeded This time would be given in seconds
- A Hash Sign (#) as call digit is received and the Option "Hash (#) as call number termination character" is activated.
- The Information element "Sending Complete" is received.

It is naturally very important that the Callback profile must be addressed either in the call number plan directly or in the LCR – module.

If the call is routed over the LCR module the Hash sign (#) will not be accepted by the LCR Module and the connection will be terminated with Cause 1 (unknown called number).

Configuration of the Servers

The Server Profiles are made by clicking on "New Server".

The server profile is exactly the opposite of the Client. The server number and the call number range are entered. I.e. under "Incoming Number" it is expected that the Servernumer will be given as the target number in the activation call. The expected call number range is entered under it.

The "Outgoing Server CLIP" gives the Number that the Server in the Callback Call sends as CLIP. The outgoing extension number will be configured among this.

When a call comes in, the incoming extension number will be converted into the outgoing extension number.

Example:

The Incoming extension numbers are 10 to 20 and the outgoing extension numbers are 50 to 60. The extensions will be converted as follows:

10 à 50, 11 à 51, 12 à 52, 13 à 53 etc.

On the Server there is a source and target routing, with which the analog to the Client in either case a Linegroup or a Dialling plan can be chosen.

In the settings for the "Source" it must be guaranteed that a route back to the caller can be found. I.e. the callers number and (not the switches number) must be in the Dialling plan. On the setting for the" Target" it must be guaranteed that the route to the target number can be found. I.e. The Original Target number (the originally dialled number, not that of the Callback Server) must be in the Dialling Plan.

The call will fail if one or the other routes can not be found.

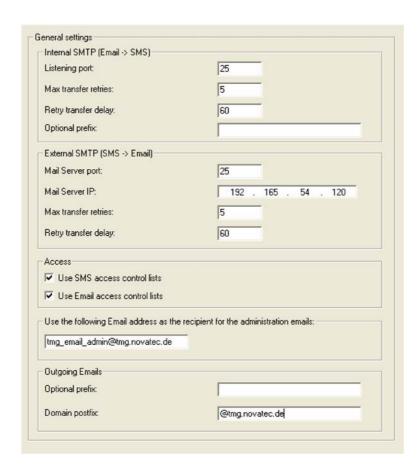
Under, Access list" a permission class or access restriction/white list can be chosen. Only callers on this list can use the Callback functions. In the case where the setting "Without" is configured all subscribers can use the Callback Service.

The Fields "Activation timer" and "Activate tone generation" steer the behaviour of the Server on an incoming call. The Server will wait however many seconds are given under the "Activation timer" Settings, before the call to the Target called number and the Callback call are activated. During this time the Caller will hear either nothing or if the "Activate tone" generation is activated, a alerting Tone.

It can happen that the Server connects several Subscribers, In this case the Server requires more Profiles.

Example:

When the Client is installed in Germany:


The Server needs a Profile where the Incoming number (Trigger) and Outgoing Server Clip is configured as 0044123456 (00 Prefix for International)

When the Client is installed in SA, the Numbers should be configured so: 0944123456 (09 Prefix for International in SA).

5.5 Remarks to SMS to E-Mail Configuration

SMS Email

On this page the various options that affect both email and SMS messaging are present.

Internal SMTP (Email -> SMS)

Previous Start Next

Listening port

This is the port in which the system internal **SMTP** server listens for incoming mails from the corporate **SMTP** server. Normally the standard port (25) is the appropriate value, however the **NMG** system administrator has the opportunity to change this if required

Max transfer retries

This value sets the maximal amount of times the system will try to re-send a SMS on failure. Once this limit is reached, the system will cancel the operation, and the sender will receive a email informing him/her of this failure

Retry transfer delay

This is the time span the system uses between each attempt to send an SMS message on failing on the initial attempt. The standard value is 60 minutes (1 hour). The smallest possible time span is 1 minute, the largest is 1440 minutes (24 hours)

Optional prefix

This prefix may be used when sending a email to an mobile recipient. Some mail clients do not allow a mobile phone number as a valid email address, therefore this prefix can be used to overcome this. The prefix will be cut off by the **NMG** system (before passing through the **SMS** alias lists).

External SMTP (SMS -> Email)

Mail server port

This is the port that the corporate **SMTP** server "listens" on. The TMG system sends emails to the corporate **SMTP** server via this port. The preset value (25) is normally the standard setting. If the corporate SMTP server has another value set, then change this value to that of the corporate **SMTP** server. If this value is incorrectly set, then the **NMG** system cannot send emails.

Mail server IP

This is the IP address of the corporate SMTP server. This value MUST be set correctly. If this is not the case, then the TMG system cannot send emails. The IP address can be obtained from your system administrator.

Max transfer retries

This value sets the maximal amount of times the system will try to re-send a email on failure. Once this limit is reached, the system will cancel the operation.

Retry transfer delay

This is the time span the system uses between each attempt to send an email on failing on the initial attempt. The standard value is 60 minutes (1 hour). The smallest possible time span is 1 minute, the largest is 1440 minutes (24 hours).

Access

Use SMS access control lists

Activate this option if you wish to control which mobile users have access to the **SMS** to email service. If this option is activated and you have not defined any **SMS access lists**, or assigned them to the GSM channels, then this option has no influence on the access to the service (i.e. as if the option were disabled). To create, edit or assign **SMS access lists**, this option must be enabled.

Use Email access control list

Activate this option if you wish to control which email addresses have access to the Email to SMS service. If this option is activated and you have not defined a email access list, then no-one has access to the Email to SMS service. To create, edit or delete entries in the email access list this option must also be enabled.

Use the following Email address as the recipient for administration emails

When administering the system via email, the emails must be sent to this email address. This is **NOT** an optional setting. This must be a valid email address recognized by the corporate **SMTP** server. If this is not the case, then email administration will not be available.

Outgoing Emails

Optional prefix

Here you may enter an optional prefix that will be added to the email address of the sender **Domain postfix**

Here you must enter the Domain of your mail server. This setting is not optional.

Note

To allow the use of the SMS<->Email functions, the GSM profiles must be explicitly set to allow the sending of SMS messages. If this is not the case, then the messages cannot be sent.

Testing the SMS - Email Server

To test the function of the SMS - Email Server, you can connect to the server using a telnet session, and simulate the sending of an email via SMS. Here is a short example of this procedure.

telnet

192.168.127.56 25

HELO SOFT8

MAIL FROM: phbe@novatec.de

RCPT TO: 01705202222@nmg.novatec.de

DATA

Hi Phil, how is the help coming on?

(dependant on the telnet client being used, the signaling of the end of data may be CTRL++, or <enter>.<enter>)

QUIT

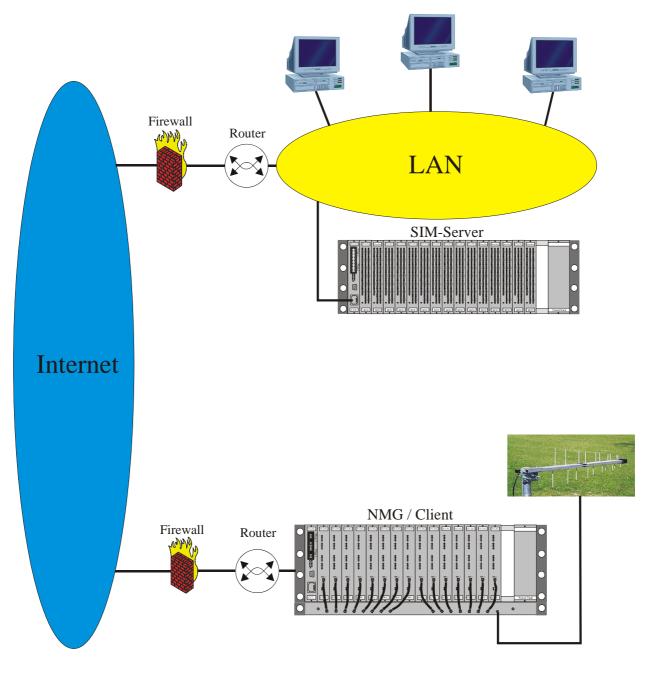
Explanation

The telnet session is opened and connects to the server at 192.168.127.56 using port 25. The HELO SOFT8

lets the server know who is contacting it.

The MAIL FROM: phbe@novatec.de is the sender information the server requires. The RCPT TO: 01705202222@nmg.novatec.de is the recipient of the email,

in this case a mobile number. The **DATA** is the actual payload that is sent via SMS to the recipient. After signaling the end of the **DATA** section, the quit ends the telnet session. If the server is correctly set up, then the recipient will receive an SMS. Also, dependant on the settings under **Email settings**, the sender


(phbe@novatec.de) may receive confirmation of the sending of the SMS. Considerations

Due to the many various mail server setups and servers that are available (MS Exchange, Linux/Unix MailTo, Lotus Notes etc) this is just a brief and general overview on how to integrate the NovaTec SMS <-> Email application into an existing environment.

Within the company network, a unambiguous domain name should be given to identify the TMG system within the network, in the above example it is **tmg.novatec.de**.

This domain name should be mapped to the IP address that has been setup. The "main" mail server should be setup to forward any mails with the domain postfix **tmg** to the NovaTec system. This allows the use of the SMS<->Email application without any changes to the mail clients within the company.

5.6 Remarks to SIM-Server installation

6.0 Technical Data

Mechanical Data			
Dimensions (WxHxL) 480 mm (365 mm as desktop model) x 60 mm x 220 mm			
Weight (Housing + power pack + CCU) min. 2 kg (4 kg when fully constructed)			
Method of suspension	central screws in a dedicated 19" rack or desktop model		
Construction	Modular comprising slot-in modules and sub-modules		

Electrical Data					
Power supply	100 - 240 V~, 50 - 60 Hz				
Power Input	0,7 A~, 42-56 VA				
Connection	Power line with 3-pin plug				
Earth	Separate earth via min. 2.5 mm² earth line				
Overvoltage protection	Internal secondary protection				
Interfaces (basic configuration, S5+ with one CCU only)	1 x V.24 (not in MCU, BCU) 1 x Centronics (only CCU and CCU-Light) 4 x ISDN-BRA, E-DSS1 (optional) 2 x ISDN-PRA E-DSS1 (optional) 1 x Ethernet according IEEE 802.3/802.3u (CCU-3, MCU and BCU only)				
BRA interface (S_0 -interface)	In accordance with CTR 3, TBR3, ITAAB Supply: 0 V Range: max. 220 m (passive Bus) max. 900 m (extended passive Bus) max. 1000 m (Point to Point)				
PRA interface (S _{2M} -interface)	In accordance with CTR 4 A1, 98/520/EG Range: 1000 m using 0.6 mm diameter cable				
U interface (U_{K0} -interface)	In accordance with ANSI T1.601, CTR 3, TBR 3 Supply: 0 V (1F5010-2) Range: max. 8000 m using 0.6 mm diameter cable max. allowed cable attenuation 40 dB/40 kHz				
GSM interface According to the following standards Output Power 900MHz Output Power 1800 MHz Speech codec	GSM class Small MS Dual Band EGSM900 and GSM1800 (GSM Phase 2+) Class 4 (2W) for EGSM900 Class 1(1W) for GSM1800 Half Rate (ETS 06.20) Full Rate (ETS 06.10) Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)				
IP-Interface	SIP 2.0 -> RFC3261 ITU V.110 -> Data Interface between ISDN, IP and GSM				
Environmental Specifications					
Storage and Transport	-20° Celsius to +90° Celsius 0% to 95% relative humidity (not condensing)				
Operation	+5° Celsius to +40° Celsius 0% to 95 % relative humidity (not condensing)				

NovaTec S5+ Page 93
Version 1.0